Suppr超能文献

跨未观察群体检验测量不变性:协变量在因子混合模型中的作用。

Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.

作者信息

Wang Yan, Kim Eunsook, Ferron John M, Dedrick Robert F, Tan Tony X, Stark Stephen

机构信息

University of Massachusetts Lowell, Lowell, MA, USA.

University of South Florida, Tampa, FL, USA.

出版信息

Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.

Abstract

Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This study examined the issue of covariate effects with FMM in the context of measurement invariance testing. Specifically, the impact of excluding and misspecifying covariate effects on measurement invariance testing and class enumeration was investigated via Monte Carlo simulations. Data were generated based on FMM models with (1) a zero covariate effect, (2) a covariate effect on the latent class variable, and (3) covariate effects on both the latent class variable and the factor. For each population model, different analysis models that excluded or misspecified covariate effects were fitted. Results highlighted the importance of including proper covariates in measurement invariance testing and evidenced the utility of a model comparison approach in searching for the correct specification of covariate effects and the level of measurement invariance. This approach was demonstrated using an empirical data set. Implications for methodological and applied research are discussed.

摘要

因子混合模型(FMM)已越来越多地用于研究未观察到的总体异质性。本研究在测量不变性检验的背景下,使用FMM检验协变量效应问题。具体而言,通过蒙特卡罗模拟研究了排除和错误指定协变量效应对测量不变性检验和类别枚举的影响。数据是基于FMM模型生成的,这些模型包括:(1)零协变量效应;(2)对潜在类别变量的协变量效应;(3)对潜在类别变量和因子的协变量效应。对于每个总体模型,拟合了排除或错误指定协变量效应的不同分析模型。结果强调了在测量不变性检验中纳入适当协变量的重要性,并证明了模型比较方法在寻找协变量效应的正确指定和测量不变性水平方面的效用。使用一个实证数据集展示了这种方法。讨论了对方法学和应用研究的启示。

相似文献

1
Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.
Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.
2
Covariate inclusion in factor mixture modeling: Evaluating one-step and three-step approaches under model misspecification and overfitting.
Behav Res Methods. 2023 Sep;55(6):3281-3296. doi: 10.3758/s13428-022-01964-8. Epub 2022 Sep 12.
4
Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models.
Stat Biosci. 2018 Dec;10(3):634-650. doi: 10.1007/s12561-018-9222-7. Epub 2018 Sep 29.
5
Investigating Approaches to Estimating Covariate Effects in Growth Mixture Modeling: A Simulation Study.
Educ Psychol Meas. 2017 Oct;77(5):766-791. doi: 10.1177/0013164416653789. Epub 2016 Jun 15.
8
Different Approaches to Covariate Inclusion in the Mixture Rasch Model.
Educ Psychol Meas. 2016 Oct;76(5):848-872. doi: 10.1177/0013164415610380. Epub 2015 Oct 13.

引用本文的文献

1
Covariate inclusion in factor mixture modeling: Evaluating one-step and three-step approaches under model misspecification and overfitting.
Behav Res Methods. 2023 Sep;55(6):3281-3296. doi: 10.3758/s13428-022-01964-8. Epub 2022 Sep 12.
2
DIF Detection With Zero-Inflation Under the Factor Mixture Modeling Framework.
Educ Psychol Meas. 2022 Aug;82(4):678-704. doi: 10.1177/00131644211028995. Epub 2021 Jul 26.
3
Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles.
Educ Psychol Meas. 2022 Feb;82(1):5-28. doi: 10.1177/0013164421997896. Epub 2021 Mar 9.
4
Combined Approach to Multi-Informant Data Using Latent Factors and Latent Classes: Trifactor Mixture Model.
Educ Psychol Meas. 2021 Aug;81(4):728-755. doi: 10.1177/0013164420973722. Epub 2020 Nov 27.

本文引用的文献

1
Modeling predictors of latent classes in regression mixture models.
Struct Equ Modeling. 2016;23(4):601-614. doi: 10.1080/10705511.2016.1158655. Epub 2016 Apr 21.
2
The complexity of trauma exposure and response: Profiling PTSD and CPTSD among a refugee sample.
Psychol Trauma. 2019 Feb;11(2):165-175. doi: 10.1037/tra0000408. Epub 2018 Oct 22.
3
A Comparison of Methods for Uncovering Sample Heterogeneity: Structural Equation Model Trees and Finite Mixture Models.
Struct Equ Modeling. 2017;24(2):270-282. doi: 10.1080/10705511.2016.1250637. Epub 2016 Dec 7.
4
An evaluation of the use of covariates to assist in class enumeration in linear growth mixture modeling.
Behav Res Methods. 2017 Jun;49(3):1179-1190. doi: 10.3758/s13428-016-0778-1.
5
Testing job typologies and identifying at-risk subpopulations using factor mixture models.
J Occup Health Psychol. 2017 Oct;22(4):503-517. doi: 10.1037/ocp0000038. Epub 2016 Apr 25.
6
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.
7
Improvement in Detection of Differential Item Functioning Using a Mixture Item Response Theory Model.
Multivariate Behav Res. 2010 Nov 30;45(6):975-99. doi: 10.1080/00273171.2010.533047.
9
Identification of anxiety sensitivity classes and clinical cut-scores in a sample of adult smokers: results from a factor mixture model.
J Anxiety Disord. 2014 Oct;28(7):696-703. doi: 10.1016/j.janxdis.2014.07.006. Epub 2014 Jul 19.
10
Examining the latent structure of anxiety sensitivity in adolescents using factor mixture modeling.
Psychol Assess. 2014 Sep;26(3):741-51. doi: 10.1037/a0036744. Epub 2014 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验