Suppr超能文献

表面增强拉曼光谱和微流控平台:挑战、解决方案及潜在应用。

Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications.

机构信息

Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745 Jena, Germany.

Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Str. 9, 07745 Jena, Germany.

出版信息

Analyst. 2017 Mar 27;142(7):1022-1047. doi: 10.1039/c7an00118e.

Abstract

The exhaustive body of literature published in the last four years on the development and application of systems based on surface-enhanced Raman spectroscopy (SERS) combined with microfluidic devices demonstrates that this research field is a current hot topic. This synergy, also referred to as lab-on-a-chip SERS (LoC-SERS) or nano/micro-optofluidics SERS, has opened the door for new opportunities where both techniques can profit. On the one hand, SERS measurements are considerably improved because the processes previously performed on a large scale in the laboratory and prone to human error can now be carried out in nanoliter volumes in an automatic and reproducible manner; on the other hand, microfluidic platforms need detection methods able to sense in small volumes and therefore, SERS is ideal for this task. The present review not only aims to provide the reader an overview of the recent developments and advancements in this field, but it also addresses the key aspects of fundamental SERS theory that influence the interpretation of SERS spectra, as well as the challenges brought about by the experimental conditions and chemometric data analysis.

摘要

过去四年中,发表的关于基于表面增强拉曼光谱(SERS)结合微流控器件的系统的开发和应用的详尽文献表明,该研究领域是当前的热门话题。这种协同作用也被称为芯片上的 SERS(LoC-SERS)或纳米/微光电流体 SERS,为新技术都能受益的新机会打开了大门。一方面,SERS 测量得到了极大的改善,因为以前在实验室中进行的、容易出错的大规模过程现在可以以自动和可重复的方式在纳升级体积中进行;另一方面,微流控平台需要能够在小体积中检测的方法,因此,SERS 非常适合这项任务。本文综述不仅旨在为读者提供该领域最新进展和进展的概述,还介绍了对 SERS 光谱解释有影响的基本 SERS 理论的关键方面,以及实验条件和化学计量数据分析带来的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验