Nganga John K, Samanamu Christian R, Tanski Joseph M, Pacheco Carlos, Saucedo Cesar, Batista Victor S, Grice Kyle A, Ertem Mehmed Z, Angeles-Boza Alfredo M
Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269-3060, United States.
Department of Chemistry, Vassar College , Poughkeepsie, New York 12604, United States.
Inorg Chem. 2017 Mar 20;56(6):3214-3226. doi: 10.1021/acs.inorgchem.6b02384. Epub 2017 Mar 9.
A series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO reduction ability. The reported complexes are of the type Re(N-N)(CO)Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO reduction by 1 in acetonitrile using density functional theory (DFT) supports the C-O bond cleavage step being the rate-determining step (RDS) (ΔG = 27.2 kcal mol). The dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C-O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO)Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (i/i), up to 7 times larger than that of I.
合成了一系列由含吡啶部分与恶唑啉环相连的不对称二亚胺配体配位的三羰基铼配合物,对其进行了结构和电化学表征,并筛选了其CO还原能力。报道的配合物类型为Re(N-N)(CO)Cl,其中N-N = 2-(吡啶-2-基)-4,5-二氢恶唑(1)、5-甲基-2-(吡啶-2-基)-4,5-二氢恶唑(2)和5-苯基-2-(吡啶-2-基)-4,5-二氢恶唑(3)。在多种溶剂中观察到这些配合物对CO的电催化还原,在乙腈中的反应速度比在二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)中更快。使用密度泛函理论(DFT)对乙腈中1电化学还原CO的催化循环进行分析,支持C-O键断裂步骤是速率决定步骤(RDS)(ΔG = 27.2 kcal mol)。周转频率(TOFs)对溶剂给体数(DN)的依赖性也支持C-O键断裂是速率决定步骤。此外,使用明确溶剂分子的计算表明,溶剂依赖性可能源于质子化优先机制。与其他由fac-Re(bpy)(CO)Cl (I; bpy = 2,2'-联吡啶)衍生的配合物不同,其中bpy配体中的一个吡啶基部分被另一个亚胺取代,在第一个还原电位期间没有催化增强。值得注意的是,催化剂1和2的相对周转频率(i/i)比I高达7倍。