IEEE Trans Image Process. 2017 May;26(5):2394-2407. doi: 10.1109/TIP.2017.2676342. Epub 2017 Mar 1.
Region-based hierarchical image representation is crucial in many computer vision applications. However, in practice, an image hierarchy is usually dense, and contains many less informative branches. It is expected that a hierarchy should be accurate and simplified, which is not only desirable for different applications, but also saves considerable computational load for the further analysis. To achieve this target, this paper proposes a novel approach for unsupervised simplification of region-based image hierarchies, which employs the global and local evolution analyses of a hierarchy. First, we introduce a global evolution analysis in the scale-sets framework, which provides clues for eliminating less informative branches. Moreover, a hybrid unsupervised simplification method is designed, utilizing the information from global and local evolution functions. A number of experiments on various images have shown that the proposed approach is effective and efficient in removing less informative nodes (averagely about 90% of the whole nodes), while preserving salient image details and retaining the accuracy.
基于区域的层次图像表示在许多计算机视觉应用中至关重要。然而,在实际中,图像层次结构通常是密集的,并且包含许多信息量较少的分支。期望层次结构既准确又简化,这不仅对不同的应用程序是理想的,而且还可以为进一步的分析节省相当大的计算负载。为了实现这一目标,本文提出了一种新的基于区域的图像层次结构的无监督简化方法,该方法利用层次结构的全局和局部演化分析。首先,我们在尺度集框架中引入了全局演化分析,该分析为消除信息量较少的分支提供了线索。此外,还设计了一种混合的无监督简化方法,利用全局和局部演化函数的信息。在各种图像上进行的大量实验表明,该方法在去除信息量较少的节点(平均约为整个节点的 90%)时非常有效和高效,同时保留了显著的图像细节并保持了准确性。