Suppr超能文献

超像素嵌入网络

Superpixel Embedding Network.

作者信息

Gaur Utkarsh, Manjunath B S

出版信息

IEEE Trans Image Process. 2019 Dec 11. doi: 10.1109/TIP.2019.2957937.

Abstract

Superpixel segmentation is a fundamental computer vision technique that finds application in a multitude of high level computer vision tasks. Most state-of-the-art superpixel segmentation methods are unsupervised in nature and thus cannot fully utilize frequently occurring texture patterns or incorporate multiscale context. In this paper, we show that superpixel segmentation can be improved by leveraging the superior modeling power of deep convolutional autoencoders in a fully unsupervised manner. We pose the superpixel segmentation problem as one of manifold learning where pixels that belong to similar texture patterns are assigned near identical embedding vectors. The proposed deep network is able to learn image-wide and dataset-wide feature patterns and the relationships between them. This knowledge is used to segment and group pixels in a way that is consistent with a more global definition of pattern coherence. Experiments demonstrate that the superpixels obtained from the embeddings learned by the proposed method outperform the state-of-theart superpixel segmentation methods for boundary precision and recall values. Additionally, we find that semantic edges obtained from the superpixel embeddings to be significantly better than the contemporary unsupervised approaches.

摘要

超像素分割是一种基础的计算机视觉技术,在众多高级计算机视觉任务中都有应用。大多数当前最先进的超像素分割方法本质上是无监督的,因此无法充分利用频繁出现的纹理模式,也无法纳入多尺度上下文信息。在本文中,我们表明可以通过以完全无监督的方式利用深度卷积自动编码器的强大建模能力来改进超像素分割。我们将超像素分割问题视为流形学习问题之一,即属于相似纹理模式的像素被分配几乎相同的嵌入向量。所提出的深度网络能够学习图像范围和数据集范围的特征模式以及它们之间的关系。这些知识被用于以一种与模式连贯性的更全局定义相一致的方式对像素进行分割和分组。实验表明,从所提出的方法学习到的嵌入中获得的超像素在边界精度和召回值方面优于当前最先进的超像素分割方法。此外,我们发现从超像素嵌入中获得的语义边缘明显优于当代无监督方法。

相似文献

1
Superpixel Embedding Network.
IEEE Trans Image Process. 2019 Dec 11. doi: 10.1109/TIP.2019.2957937.
2
MFNet: A Novel GNN-Based Multi-Level Feature Network With Superpixel Priors.
IEEE Trans Image Process. 2022;31:7306-7321. doi: 10.1109/TIP.2022.3220057. Epub 2022 Nov 23.
3
Image Segmentation of Brain MRI Based on LTriDP and Superpixels of Improved SLIC.
Brain Sci. 2020 Feb 20;10(2):116. doi: 10.3390/brainsci10020116.
4
Superpixel Segmentation Based on Grid Point Density Peak Clustering.
Sensors (Basel). 2021 Sep 24;21(19):6374. doi: 10.3390/s21196374.
5
Convex and Compact Superpixels by Edge- Constrained Centroidal Power Diagram.
IEEE Trans Image Process. 2021;30:1825-1839. doi: 10.1109/TIP.2020.3045640. Epub 2021 Jan 18.
6
Superpixel Segmentation Using Gaussian Mixture Model.
IEEE Trans Image Process. 2018 May 16. doi: 10.1109/TIP.2018.2836306.
8
[Automatic Segmentation of Digital Pathology Slides Based on Unsupervised Learning].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Sep;52(5):813-818. doi: 10.12182/20210960203.
9
Differential Evolutionary Superpixel Segmentation.
IEEE Trans Image Process. 2018 Mar;27(3):1390-1404. doi: 10.1109/TIP.2017.2778569. Epub 2017 Nov 29.
10
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.
Sensors (Basel). 2017 Jun 12;17(6):1364. doi: 10.3390/s17061364.

引用本文的文献

1
Two-Level Model for Detecting Substation Defects from Infrared Images.
Sensors (Basel). 2022 Sep 10;22(18):6861. doi: 10.3390/s22186861.

本文引用的文献

1
DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection.
IEEE Trans Image Process. 2018 Oct 31. doi: 10.1109/TIP.2018.2878966.
2
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.
3
Unsupervised Simplification of Image Hierarchies via Evolution Analysis in Scale-Sets Framework.
IEEE Trans Image Process. 2017 May;26(5):2394-2407. doi: 10.1109/TIP.2017.2676342. Epub 2017 Mar 1.
4
SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. doi: 10.1109/TPAMI.2012.120.
5
Contour detection and hierarchical image segmentation.
IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):898-916. doi: 10.1109/TPAMI.2010.161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验