Arevalo John, Cruz-Roa Angel, Arias Viviana, Romero Eduardo, González Fabio A
Machine Learning, Perception and Discovery Lab, Systems and Computer Engineering Department, Universidad Nacional de Colombia, Faculty of Engineering, Cra 30 No 45 03-Ciudad Universitaria, Building 453 Office 114, Bogotá DC, Colombia.
Pathology Department, Universidad Nacional de Colombia, Faculty of Medicine, Cra 30 No 45 03-Ciudad Universitaria, Bogotá DC, Colombia.
Artif Intell Med. 2015 Jun;64(2):131-45. doi: 10.1016/j.artmed.2015.04.004. Epub 2015 Apr 23.
The paper addresses the problem of automatic detection of basal cell carcinoma (BCC) in histopathology images. In particular, it proposes a framework to both, learn the image representation in an unsupervised way and visualize discriminative features supported by the learned model.
This paper presents an integrated unsupervised feature learning (UFL) framework for histopathology image analysis that comprises three main stages: (1) local (patch) representation learning using different strategies (sparse autoencoders, reconstruct independent component analysis and topographic independent component analysis (TICA), (2) global (image) representation learning using a bag-of-features representation or a convolutional neural network, and (3) a visual interpretation layer to highlight the most discriminant regions detected by the model. The integrated unsupervised feature learning framework was exhaustively evaluated in a histopathology image dataset for BCC diagnosis.
The experimental evaluation produced a classification performance of 98.1%, in terms of the area under receiver-operating-characteristic curve, for the proposed framework outperforming by 7% the state-of-the-art discrete cosine transform patch-based representation.
The proposed UFL-representation-based approach outperforms state-of-the-art methods for BCC detection. Thanks to its visual interpretation layer, the method is able to highlight discriminative tissue regions providing a better diagnosis support. Among the different UFL strategies tested, TICA-learned features exhibited the best performance thanks to its ability to capture low-level invariances, which are inherent to the nature of the problem.
本文探讨了组织病理学图像中基底细胞癌(BCC)的自动检测问题。具体而言,它提出了一个框架,既能以无监督的方式学习图像表示,又能可视化由学习模型支持的判别特征。
本文提出了一种用于组织病理学图像分析的集成无监督特征学习(UFL)框架,该框架包括三个主要阶段:(1)使用不同策略(稀疏自动编码器、重构独立成分分析和地形独立成分分析(TICA))进行局部(补丁)表示学习;(2)使用特征袋表示或卷积神经网络进行全局(图像)表示学习;(3)一个视觉解释层,以突出显示模型检测到的最具判别力的区域。在一个用于BCC诊断的组织病理学图像数据集中对集成无监督特征学习框架进行了详尽评估。
实验评估表明,就受试者工作特征曲线下面积而言,所提出框架的分类性能为98.1%,比基于离散余弦变换补丁的现有最先进表示方法高出7%。
所提出的基于UFL表示的方法在BCC检测方面优于现有最先进方法。由于其视觉解释层,该方法能够突出显示有判别力的组织区域,为诊断提供更好的支持。在测试的不同UFL策略中,TICA学习的特征表现出最佳性能,这得益于其捕捉问题本质中固有的低级不变性的能力。