Suppr超能文献

行为减肥治疗期间饮食失误的生态瞬时评估:特征、预测因素及其与体重变化的关系。

Ecological Momentary Assessment of Dietary Lapses Across Behavioral Weight Loss Treatment: Characteristics, Predictors, and Relationships with Weight Change.

作者信息

Forman Evan M, Schumacher Leah M, Crosby Ross, Manasse Stephanie M, Goldstein Stephanie P, Butryn Meghan L, Wyckoff Emily P, Graham Thomas J

机构信息

Department of Psychology, Drexel University, 3141 Chestnut St, Suite 119, Philadelphia, PA, 19104, USA.

Neuropsychiatric Research Institute, Fargo, ND, USA.

出版信息

Ann Behav Med. 2017 Oct;51(5):741-753. doi: 10.1007/s12160-017-9897-x.

Abstract

BACKGROUND

Adherence to dietary prescriptions is critical for successful weight loss and weight loss maintenance. However, research on specific instances of inadherence (lapses) is limited, and findings regarding the frequency, nature, and causes of lapses are mixed. Additionally, no studies have examined lapses over the course of a weight loss program.

PURPOSE

In the context of a reduced calorie diet prescribed as part of a behavioral treatment, we aimed to characterize lapse occurrence, examine lapse frequency across treatment, examine predictors of lapses, and assess the relationship between lapses and weight loss.

METHODS

Adults (n = 189) enrolled in a 12-month behavioral weight loss program completed ecological momentary assessment (EMA) at baseline, mid-treatment, and end of treatment. At each EMA survey, participants indicated whether a lapse had occurred, and responded to questions assessing situational, environmental, and affective states.

RESULTS

Lapse frequency showed a curvilinear relationship over time, such that frequency first decreased and then increased. Lapse frequency at baseline was negatively associated with early and overall weight loss. Lapses most often occurred at home, in the evenings, on the weekends, and entailed eating a forbidden food. Greater overall levels of assessed affective and environmental triggers predicted lapses, and greater momentary hunger and deprivation, and the presence of palatable food, also prospectively predicted lapses.

CONCLUSIONS

In addition to characterizing lapse frequency, the current study identified prospective predictors of lapses across treatment. These findings support the importance of lapses to weight control and provide insight for potential targets of intervention to prevent lapse occurrence.

摘要

背景

坚持饮食规定对于成功减肥和维持体重至关重要。然而,关于不坚持(失误)的具体情况的研究有限,并且关于失误的频率、性质和原因的研究结果参差不齐。此外,尚无研究考察减肥计划过程中的失误情况。

目的

在作为行为治疗一部分规定的低热量饮食背景下,我们旨在描述失误的发生情况,检查整个治疗过程中的失误频率,检查失误的预测因素,并评估失误与体重减轻之间的关系。

方法

参加为期12个月行为减肥计划的成年人(n = 189)在基线、治疗中期和治疗结束时完成了生态瞬时评估(EMA)。在每次EMA调查中,参与者表明是否发生了失误,并回答了评估情境、环境和情感状态的问题。

结果

失误频率随时间呈曲线关系,即频率先下降后上升。基线时的失误频率与早期和总体体重减轻呈负相关。失误最常发生在家里、晚上、周末,并且涉及食用禁食。评估的情感和环境触发因素的总体水平越高,预测失误的可能性越大,瞬间饥饿和匮乏感越强,以及有美味食物的情况下,也能前瞻性地预测失误。

结论

除了描述失误频率外,本研究还确定了整个治疗过程中失误的前瞻性预测因素。这些发现支持了失误对体重控制的重要性,并为预防失误发生的潜在干预目标提供了见解。

相似文献

引用本文的文献

1
Water intake, hydration, and weight management: the glass is half-full!水的摄入、水合作用与体重管理:前景乐观!
Physiol Behav. 2025 Aug 1;297:114953. doi: 10.1016/j.physbeh.2025.114953. Epub 2025 May 13.
3
Detecting Eating and Social Presence with All Day Wearable RGB-T.使用全天可穿戴式RGB-T检测饮食和社交存在情况。
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2023 Jun;2023:68-79. doi: 10.1145/3580252.3586974. Epub 2024 Jan 22.
10
[The causes of obesity relapse after weight loss].[体重减轻后肥胖复发的原因]
Probl Endokrinol (Mosk). 2023 Nov 2;70(3):67-73. doi: 10.14341/probl13275.

本文引用的文献

3
Weekend-weekday differences in diet among U.S. adults, 2003-2012.美国成年人 2003-2012 年饮食的周末-工作日差异。
Ann Epidemiol. 2016 Jan;26(1):57-65. doi: 10.1016/j.annepidem.2015.10.010. Epub 2015 Oct 28.
4
Prevalence of Overweight and Obesity in the United States, 2007-2012.2007 - 2012年美国超重和肥胖的患病率
JAMA Intern Med. 2015 Aug;175(8):1412-3. doi: 10.1001/jamainternmed.2015.2405.
8
Motivation, self-determination, and long-term weight control.动机、自我决定和长期体重控制。
Int J Behav Nutr Phys Act. 2012 Mar 2;9:22. doi: 10.1186/1479-5868-9-22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验