Polytechnic Institute of Bari, Italy.
Polytechnic Institute of Bari, Italy.
Appl Ergon. 2017 Nov;65:481-491. doi: 10.1016/j.apergo.2017.02.015. Epub 2017 Mar 7.
The evaluation of the exposure to risk factors in workplaces and their subsequent redesign represent one of the practices to lessen the frequency of work-related musculoskeletal disorders. In this paper we present K2RULA, a semi-automatic RULA evaluation software based on the Microsoft Kinect v2 depth camera, aimed at detecting awkward postures in real time, but also in off-line analysis. We validated our tool with two experiments. In the first one, we compared the K2RULA grand-scores with those obtained with a reference optical motion capture system and we found a statistical perfect match according to the Landis and Koch scale (proportion agreement index = 0.97, k = 0.87). In the second experiment, we evaluated the agreement of the grand-scores returned by the proposed application with those obtained by a RULA expert rater, finding again a statistical perfect match (proportion agreement index = 0.96, k = 0.84), whereas a commercial software based on Kinect v1 sensor showed a lower agreement (proportion agreement index = 0.82, k = 0.34).
评估工作场所的危险因素暴露及其随后的重新设计是减少与工作相关的肌肉骨骼疾病频率的实践之一。在本文中,我们介绍了 K2RULA,这是一种基于 Microsoft Kinect v2 深度相机的半自动化 RULA 评估软件,旨在实时检测到不舒服的姿势,也可以进行离线分析。我们通过两个实验验证了我们的工具。在第一个实验中,我们将 K2RULA 的总得分与参考光学运动捕捉系统获得的得分进行了比较,根据 Landis 和 Koch 量表,我们发现了统计学上的完美匹配(比例一致性指数= 0.97,k = 0.87)。在第二个实验中,我们评估了所提出的应用程序返回的总得分与 RULA 专家评估者获得的得分之间的一致性,再次发现了统计学上的完美匹配(比例一致性指数= 0.96,k = 0.84),而基于 Kinect v1 传感器的商业软件则显示出较低的一致性(比例一致性指数= 0.82,k = 0.34)。