Krishnan Anand, Yang Xingjian, Seth Utsav, Jeyachandran Jonathan M, Ahn Jonathan Y, Gardner Richard, Pedigo Samuel F, Blom-Schieber Adriana W, Banerjee Ashis G, Manohar Krithika
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
The Boeing Company, Everett, WA, USA.
Commun Eng. 2025 Mar 12;4(1):45. doi: 10.1038/s44172-025-00382-w.
Hand-intensive manufacturing processes, such as composite layup and textile draping, require significant human dexterity to accommodate task complexity. These strenuous hand motions often lead to musculoskeletal disorders and rehabilitation surgeries. Here we develop a data-driven ergonomic risk assessment system focused on hand and finger activity to better identify and address these risks in manufacturing. This system integrates a multi-modal sensor testbed that captures operator upper body pose, hand pose, and applied force data during hand-intensive composite layup tasks. We introduce the Biometric Assessment of Complete Hand (BACH) ergonomic score, which measures hand and finger risks with greater granularity than existing risk scores for upper body posture (Rapid Upper Limb Assessment, or RULA) and hand activity level (HAL). Additionally, we train machine learning models that effectively predict RULA and HAL metrics for new participants, using data collected at the University of Washington in 2023. Our assessment system, therefore, provides ergonomic interpretability of manufacturing processes, enabling targeted workplace optimizations and posture corrections to improve safety.
诸如复合材料铺层和织物 draping 等手部密集型制造工艺,需要显著的人类灵活性来适应任务的复杂性。这些剧烈的手部动作常常导致肌肉骨骼疾病和康复手术。在此,我们开发了一种数据驱动的人体工程学风险评估系统,该系统专注于手部和手指活动,以更好地识别和解决制造业中的这些风险。该系统集成了一个多模态传感器测试平台,可在手部密集型复合材料铺层任务期间捕获操作员的上身姿势、手部姿势和施加的力数据。我们引入了全手生物特征评估(BACH)人体工程学评分,该评分比现有的上身姿势风险评分(快速上肢评估,或 RULA)和手部活动水平(HAL)更细致地衡量手部和手指风险。此外,我们使用 2023 年在华盛顿大学收集的数据,训练了能够有效预测新参与者的 RULA 和 HAL 指标的机器学习模型。因此,我们的评估系统提供了制造工艺的人体工程学可解释性,能够进行有针对性的工作场所优化和姿势纠正,以提高安全性。