Sewitz Sven A, Fahmi Zahra, Lipkow Karen
Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
Nuclear Dynamics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
Curr Opin Struct Biol. 2017 Feb;42:162-168. doi: 10.1016/j.sbi.2017.02.004. Epub 2017 Mar 8.
The linear molecules of DNA that constitute a eukaryotic genome have to be carefully organised within the nucleus to be able to correctly direct gene expression. Microscopy and chromosome capture methods have revealed a hierarchical organisation into territories, domains and subdomains that ensure the accessibility of expressed genes and eventually chromatin loops that serve to bring gene enhancers into proximity of their target promoters. A rapidly growing number of genome-wide datasets and their analyses have given detailed information into the conformation of the entire genome, allowing evolutionary insights, observations of genome rearrangements during development and the identification of new gene-to-disease associations. The field is now progressing into using computational models of genome dynamics to investigate the mechanisms that shape genome structure, placing increasing importance on the role of chromatin associated proteins for this process.
构成真核生物基因组的DNA线性分子必须在细胞核内进行精心组织,以便能够正确指导基因表达。显微镜和染色体捕获方法揭示了一种分层组织,包括区域、结构域和亚结构域,这些确保了表达基因的可及性,最终形成染色质环,使基因增强子与其靶启动子靠近。越来越多的全基因组数据集及其分析提供了关于整个基因组构象的详细信息,有助于进行进化研究、观察发育过程中的基因组重排以及识别新的基因与疾病关联。该领域目前正朝着使用基因组动力学计算模型来研究塑造基因组结构的机制发展,越来越重视染色质相关蛋白在此过程中的作用。