Suppr超能文献

规模与维度的问题:真菌染色体标志的染色质。

A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi.

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331.

出版信息

Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0054-2017.

Abstract

Chromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in , , , and . Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres. We summarize the state of recent chromatin research that explains what is required for normal function of these specialized chromosomal regions in different fungi, with an emphasis on the silencing mechanism associated with subtelomeric regions, initiated by sirtuin histone deacetylases and histone H3 lysine 27 (H3K27) methyltransferases. We explore mechanisms for the appearance of "accessory" or "conditionally dispensable" chromosomes and contrast what has been learned from studies on genome-wide chromosome conformation capture in , , , and . While most of the current knowledge is based on work in a handful of genetically and biochemically tractable model organisms, we suggest where major knowledge gaps remain to be closed. Fungi will continue to serve as facile organisms to uncover the basic processes of life because they make excellent model organisms for genetics, biochemistry, cell biology, and evolutionary biology.

摘要

真菌的染色质和染色体高度多样化且动态变化,即使在同一物种内也是如此。我们对组蛋白修饰酶、RNA 干扰、DNA 甲基化和细胞周期调控的了解,最初是在 、 、 和 中提出的。在这里,我们检查了维持稳定染色体及其忠实遗传所需的三个标志性区域,即 DNA 复制起点、端粒和着丝粒。我们总结了最近关于染色质的研究状态,这些研究解释了不同真菌中这些特殊染色体区域正常功能所需的条件,重点介绍了由 Sirtuin 组蛋白去乙酰化酶和组蛋白 H3 赖氨酸 27(H3K27)甲基转移酶启动的与端粒区域相关的沉默机制。我们探讨了“附属”或“条件性可有可无”染色体出现的机制,并比较了从 、 、 和 中的全基因组染色体构象捕获研究中获得的知识。虽然目前的大部分知识都是基于少数遗传和生物化学上可处理的模式生物的工作,但我们也提出了仍需要解决的主要知识空白。真菌将继续作为揭示生命基本过程的简便生物体,因为它们是遗传学、生物化学、细胞生物学和进化生物学的绝佳模式生物。

相似文献

1
A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi.
Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0054-2017.
2
Histone Methylation by SET Domain Proteins in Fungi.
Annu Rev Microbiol. 2017 Sep 8;71:413-439. doi: 10.1146/annurev-micro-102215-095757. Epub 2017 Jul 17.
3
Hst3p, a histone deacetylase, promotes maintenance of Saccharomyces cerevisiae chromosome III lacking efficient replication origins.
Mol Genet Genomics. 2016 Feb;291(1):271-83. doi: 10.1007/s00438-015-1105-8. Epub 2015 Aug 29.
4
Variability of chromosome structure in pathogenic fungi--of 'ends and odds'.
Curr Opin Microbiol. 2014 Aug;20:19-26. doi: 10.1016/j.mib.2014.04.002. Epub 2014 May 16.
5
Genome-wide patterns of histone modifications in yeast.
Nat Rev Mol Cell Biol. 2006 Sep;7(9):657-66. doi: 10.1038/nrm1986. Epub 2006 Aug 16.
6
Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly.
Science. 2001 Apr 6;292(5514):110-3. doi: 10.1126/science.1060118. Epub 2001 Mar 15.
7
Centromeres of filamentous fungi.
Chromosome Res. 2012 Jul;20(5):635-56. doi: 10.1007/s10577-012-9290-3.
8
Coordination of DNA replication and histone modification by the Rik1-Dos2 complex.
Nature. 2011 Jul 3;475(7355):244-8. doi: 10.1038/nature10161.
10
Unbelievable but True: Epigenetics and Chromatin in Fungi.
Trends Genet. 2021 Jan;37(1):12-20. doi: 10.1016/j.tig.2020.09.016. Epub 2020 Oct 19.

引用本文的文献

1
Histone deacetylase-1 is required for epigenome stability in .
bioRxiv. 2025 Jan 21:2025.01.17.633486. doi: 10.1101/2025.01.17.633486.
2
Transcription factor-dependent regulatory networks of sexual reproduction in .
mBio. 2025 Jan 8;16(1):e0303024. doi: 10.1128/mbio.03030-24. Epub 2024 Nov 26.
3
Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts.
Microb Cell. 2024 Aug 2;11:288-311. doi: 10.15698/mic2024.08.833. eCollection 2024.
5
Nuclear genome organization in fungi: from gene folding to Rabl chromosomes.
FEMS Microbiol Rev. 2023 May 19;47(3). doi: 10.1093/femsre/fuad021.
6
The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi.
Microbiol Mol Biol Rev. 2022 Dec 21;86(4):e0010422. doi: 10.1128/mmbr.00104-22. Epub 2022 Nov 21.
8
Non-Mendelian transmission of accessory chromosomes in fungi.
Chromosome Res. 2022 Sep;30(2-3):241-253. doi: 10.1007/s10577-022-09691-8. Epub 2022 Jul 26.
9
Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review.
Environ Microbiol. 2022 Jul;24(7):2857-2881. doi: 10.1111/1462-2920.16034. Epub 2022 May 30.
10
Three-Dimensional Genome Map of the Filamentous Fungus .
Microbiol Spectr. 2022 Jun 29;10(3):e0212121. doi: 10.1128/spectrum.02121-21. Epub 2022 May 2.

本文引用的文献

1
B chromosomes in plants.
New Phytol. 1995 Dec;131(4):411-434. doi: 10.1111/j.1469-8137.1995.tb03079.x.
2
Shelterin components mediate genome reorganization in response to replication stress.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5479-5484. doi: 10.1073/pnas.1705527114. Epub 2017 May 10.
3
Widespread adenine N6-methylation of active genes in fungi.
Nat Genet. 2017 Jun;49(6):964-968. doi: 10.1038/ng.3859. Epub 2017 May 8.
5
Higher order assembly: folding the chromosome.
Curr Opin Struct Biol. 2017 Feb;42:162-168. doi: 10.1016/j.sbi.2017.02.004. Epub 2017 Mar 8.
6
Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2.
Trends Genet. 2017 Mar;33(3):220-231. doi: 10.1016/j.tig.2017.01.006. Epub 2017 Feb 11.
8
H3K27 methylation: a promiscuous repressive chromatin mark.
Curr Opin Genet Dev. 2017 Apr;43:31-37. doi: 10.1016/j.gde.2016.11.001. Epub 2016 Dec 8.
9
Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15048-15053. doi: 10.1073/pnas.1615546113. Epub 2016 Nov 16.
10
Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes.
PLoS Genet. 2016 Nov 17;12(11):e1006401. doi: 10.1371/journal.pgen.1006401. eCollection 2016 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验