Suppr超能文献

增强线粒体功能可挽救阿尔茨海默病小鼠模型中的成年神经发生。

Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of Alzheimer's disease.

作者信息

Richetin Kevin, Moulis Manon, Millet Aurélie, Arràzola Macarena S, Andraini Trinovita, Hua Jennifer, Davezac Noélie, Roybon Laurent, Belenguer Pascale, Miquel Marie-Christine, Rampon Claire

机构信息

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France.

Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France; Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

出版信息

Neurobiol Dis. 2017 Jun;102:113-124. doi: 10.1016/j.nbd.2017.03.002. Epub 2017 Mar 10.

Abstract

Adult hippocampal neurogenesis is strongly impaired in Alzheimer's disease (AD). In several mouse models of AD, it was shown that adult-born neurons exhibit reduced survival and altered synaptic integration due to a severe lack of dendritic spines. In the present work, using the APPxPS1 mouse model of AD, we reveal that this reduced number of spines is concomitant of a marked deficit in their neuronal mitochondrial content. Remarkably, we show that targeting the overexpression of the pro-neural transcription factor Neurod1 into APPxPS1 adult-born neurons restores not only their dendritic spine density, but also their mitochondrial content and the proportion of spines associated with mitochondria. Using primary neurons, a bona fide model of neuronal maturation, we identified that increases of mitochondrial respiration accompany the stimulating effect of Neurod1 overexpression on dendritic growth and spine formation. Reciprocally, pharmacologically impairing mitochondria prevented Neurod1-dependent trophic effects. Thus, since overexpression of Neurod1 into new neurons of APPxPS1 mice rescues spatial memory, our present data suggest that manipulating the mitochondrial system of adult-born hippocampal neurons provides neuronal plasticity to the AD brain. These findings open new avenues for far-reaching therapeutic implications towards neurodegenerative diseases associated with cognitive impairment.

摘要

在阿尔茨海默病(AD)中,成体海马神经发生严重受损。在几种AD小鼠模型中,研究表明,由于严重缺乏树突棘,新生神经元的存活率降低,突触整合也发生改变。在本研究中,我们使用AD的APPxPS1小鼠模型发现,树突棘数量的减少伴随着其神经元线粒体含量的显著缺陷。值得注意的是,我们发现,将神经前体细胞转录因子Neurod1在APPxPS1新生神经元中过表达,不仅能恢复其树突棘密度,还能恢复其线粒体含量以及与线粒体相关的树突棘比例。利用原代神经元这一真正的神经元成熟模型,我们发现线粒体呼吸的增加伴随着Neurod1过表达对树突生长和树突棘形成的刺激作用。相反,药理学方法损害线粒体可阻止Neurod1依赖的营养作用。因此,由于在APPxPS1小鼠的新生神经元中过表达Neurod1可挽救空间记忆,我们目前的数据表明,操纵成体海马神经元的线粒体系统可为AD大脑提供神经元可塑性。这些发现为与认知障碍相关的神经退行性疾病开辟了具有深远治疗意义的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验