Suppr超能文献

划分格上张量展开之间的算子范数不等式

OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

作者信息

Wang Miaoyan, Duc Khanh Dao, Fischer Jonathan, Song Yun S

机构信息

Department of Mathematics, University of Pennsylvania.

Department of Statistics, University of California, Berkeley.

出版信息

Linear Algebra Appl. 2017 May 1;520:44-66. doi: 10.1016/j.laa.2017.01.017. Epub 2017 Jan 17.

Abstract

Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- tensor, which are in one-to-one correspondence with the set of partitions of {1, …, }. We derive general inequalities between the -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

摘要

近年来,高阶张量在数据密集型领域的关注度激增,其应用广泛,包括图像处理、盲源分离、社区检测和特征提取等。张量相关算法中的一个常见范式主张将张量展开(或展平)为矩阵,并应用针对矩阵开发的经典方法。尽管此类技术很受欢迎,但目前对于张量展开后其功能特性如何变化尚不清楚。与几乎只专注于矩阵化的现有工作不同,我们在此考虑一个阶张量的所有可能展开,这些展开与集合{1, …, }的划分集一一对应。我们推导了在划分格上定义的任意展开的 -范数之间的一般不等式。特别地,我们展示了张量的谱范数( = 2)如何由其展开的谱范数界定,并得到了任意张量的Frobenius范数与谱范数之比的改进上界。对于满足广义正交可分解性定义的特殊结构张量,我们证明谱范数在特定的展开操作子集中保持不变。

相似文献

1
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.划分格上张量展开之间的算子范数不等式
Linear Algebra Appl. 2017 May 1;520:44-66. doi: 10.1016/j.laa.2017.01.017. Epub 2017 Jan 17.
3
4
Hyperspectral Image Fusion via a Novel Generalized Tensor Nuclear Norm Regularization.基于新型广义张量核范数正则化的高光谱图像融合
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):7437-7448. doi: 10.1109/TNNLS.2024.3385473. Epub 2025 Apr 4.
6
Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.通过四阶结构张量预测表观小梁骨刚度。
Biomech Model Mechanobiol. 2016 Aug;15(4):831-44. doi: 10.1007/s10237-015-0726-5. Epub 2015 Sep 4.
8
Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation.用于潜在变量分析的张量网络:张量列车逼近的新算法
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4622-4636. doi: 10.1109/TNNLS.2019.2956926. Epub 2020 Oct 30.
9
Low Tensor-Ring Rank Completion by Parallel Matrix Factorization.通过并行矩阵分解实现低张量环秩补全
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3020-3033. doi: 10.1109/TNNLS.2020.3009210. Epub 2021 Jul 6.
10
Scaled Coupled Norms and Coupled Higher-Order Tensor Completion.尺度耦合范数与耦合高阶张量补全。
Neural Comput. 2020 Feb;32(2):447-484. doi: 10.1162/neco_a_01254. Epub 2019 Dec 13.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验