Suppr超能文献

用于纵向关系数据的多线性张量回归

MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.

作者信息

Hoff Peter D

机构信息

University of Washington.

出版信息

Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.

Abstract

A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.

摘要

关系数据(如来自社交网络的数据)的一个基本方面是关系之间存在依赖的可能性。特别是,一对节点成员之间的关系可能会对另一对节点成员之间的关系产生影响。本文开发了一种回归模型,用于在纵向和多变量关系数据或其他可以用张量形式表示的数据背景下估计此类影响。该模型基于一般的多线性张量回归模型,其一个特殊情况是张量自回归模型,其中一个时间点的关系张量由前一时间点的关系简约回归得到。这是通过一个可分离的(即克罗内克结构的)回归参数以及一个可分离的协方差模型来实现的。在对纵向多变量关系数据的分析背景下,展示了多线性张量回归模型如何能够表示关系和网络数据中经常出现的模式,如互惠性和传递性。

相似文献

1
MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA.用于纵向关系数据的多线性张量回归
Ann Appl Stat. 2015 Sep;9(3):1169-1193. doi: 10.1214/15-AOAS839. Epub 2015 Nov 2.
3
A Novel Tensor Learning Model for Joint Relational Triplet Extraction.一种用于联合关系三元组提取的新型张量学习模型。
IEEE Trans Cybern. 2024 Apr;54(4):2483-2494. doi: 10.1109/TCYB.2023.3265851. Epub 2024 Mar 18.
4
7
Bayesian Nonparametric Models for Multiway Data Analysis.贝叶斯非参数模型在多向数据分析中的应用。
IEEE Trans Pattern Anal Mach Intell. 2015 Feb;37(2):475-87. doi: 10.1109/TPAMI.2013.201.

引用本文的文献

2
Mode-wise principal subspace pursuit and matrix spiked covariance model.模式主性子空间追踪与矩阵尖峰协方差模型
J R Stat Soc Series B Stat Methodol. 2024 Sep 2;87(1):232-255. doi: 10.1093/jrsssb/qkae088. eCollection 2025 Feb.
3
7
9
Symmetric Bilinear Regression for Signal Subgraph Estimation.用于信号子图估计的对称双线性回归
IEEE Trans Signal Process. 2019 Apr 1;67(7):1929-1940. doi: 10.1109/tsp.2019.2899818. Epub 2019 Feb 15.

本文引用的文献

1
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
2
A Separable Model for Dynamic Networks.动态网络的可分离模型
J R Stat Soc Series B Stat Methodol. 2014 Jan 1;76(1):29-46. doi: 10.1111/rssb.12014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验