Tefft Brandon J, Uthamaraj Susheil, Harburn J Jonathan, Hlinomaz Ota, Lerman Amir, Dragomir-Daescu Dan, Sandhu Gurpreet S
Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN., USA.
Division of Engineering, Mayo Clinic, Rochester, MN., USA.
J Magn Magn Mater. 2017 Apr 1;427:100-104. doi: 10.1016/j.jmmm.2016.11.007. Epub 2016 Nov 4.
Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.
新兴的纳米技术使得利用磁力引导磁性标记的细胞、药物及其他治疗剂的移动成为可能。在猪冠状动脉植入模型中,用超顺磁性氧化铁纳米颗粒(SPION)标记的内皮细胞此前已被捕获在可磁化的2205双相不锈钢支架表面。最近,我们用电纺聚氨酯纳米纤维涂覆这些支架,以制造原型支架移植物。促进内皮化可能有助于改善接受支架移植物治疗的动脉的愈合,降低血栓形成和再狭窄的风险,并实现小口径应用。当置于外部磁场存在下的SPION标记的内皮细胞悬液中时,磁化的支架移植物成功地将细胞捕获到与支架支柱相邻的表面区域。在猪(n = 13)的冠状动脉循环内植入后立即进行SPION标记的自体内皮细胞递送,结果在7天时装置广泛通畅,有薄而均匀的新生内膜,无血栓形成或炎症迹象。此外,磁化的支架移植物成功地将SPION标记的内皮细胞捕获并保留在与支架支柱相邻和支架支柱之间的选定区域,而非磁化的对照支架移植物则没有。这些原型装置的早期结果令人鼓舞,为了实现更均匀的细胞捕获和完全内皮化,还需要进一步改进。一旦优化,这种方法可能会使血管支架移植物更快、更完全地愈合,同时改善长期装置性能。