Suppr超能文献

使用静电纺丝和球囊扩张式裸金属支架制造小口径覆膜支架

Fabrication of Small Caliber Stent-grafts Using Electrospinning and Balloon Expandable Bare Metal Stents.

作者信息

Uthamaraj Susheil, Tefft Brandon J, Jana Soumen, Hlinomaz Ota, Kalra Manju, Lerman Amir, Dragomir-Daescu Dan, Sandhu Gurpreet S

机构信息

Division of Engineering, Mayo Clinic.

Department of Cardiovascular Diseases, Mayo Clinic.

出版信息

J Vis Exp. 2016 Oct 26(116):54731. doi: 10.3791/54731.

Abstract

Stent-grafts are widely used for the treatment of various conditions such as aortic lesions, aneurysms, emboli due to coronary intervention procedures and perforations in vasculature. Such stent-grafts are manufactured by covering a stent with a polymer membrane. An ideal stent-graft should have a biocompatible stent covered by a porous, thromboresistant, and biocompatible polymer membrane which mimics the extracellular matrix thereby promoting injury site healing. The goal of this protocol is to manufacture a small caliber stent-graft by encapsulating a balloon expandable stent within two layers of electrospun polyurethane nanofibers. Electrospinning of polyurethane has been shown to assist in healing by mimicking native extracellular matrix, thereby promoting endothelialization. Electrospinning polyurethane nanofibers on a slowly rotating mandrel enabled us to precisely control the thickness of the nanofibrous membrane, which is essential to achieve a small caliber balloon expandable stent-graft. Mechanical validation by crimping and expansion of the stent-graft has shown that the nanofibrous polyurethane membrane is sufficiently flexible to crimp and expand while staying patent without showing any signs of tearing or delamination. Furthermore, stent-grafts fabricated using the methods described here are capable of being implanted using a coronary intervention procedure using standard size guide catheters.

摘要

支架移植物广泛用于治疗各种病症,如主动脉病变、动脉瘤、冠状动脉介入手术引起的栓子以及脉管系统穿孔。此类支架移植物是通过用聚合物膜覆盖支架来制造的。理想的支架移植物应具有生物相容性支架,该支架由多孔、抗血栓且生物相容的聚合物膜覆盖,该聚合物膜模仿细胞外基质,从而促进损伤部位愈合。本方案的目标是通过将球囊可扩张支架封装在两层电纺聚氨酯纳米纤维中来制造小口径支架移植物。已证明电纺聚氨酯有助于通过模仿天然细胞外基质促进内皮化,从而促进愈合。在缓慢旋转的心轴上进行聚氨酯纳米纤维的电纺使我们能够精确控制纳米纤维膜的厚度,这对于实现小口径球囊可扩张支架移植物至关重要。通过对支架移植物进行卷曲和扩张进行的机械验证表明,纳米纤维聚氨酯膜具有足够的柔韧性以进行卷曲和扩张,同时保持通畅,没有任何撕裂或分层的迹象。此外,使用此处所述方法制造的支架移植物能够使用标准尺寸的引导导管通过冠状动脉介入手术进行植入。

相似文献

2
3
Occlusion of canine aneurysms using microporous self-expanding stent grafts: long-term follow-up.
Clin Neurol Neurosurg. 2014 Jul;122:34-41. doi: 10.1016/j.clineuro.2014.04.013. Epub 2014 Apr 22.
4
A comparison of covered vs bare expandable stents for the treatment of aortoiliac occlusive disease.
J Vasc Surg. 2011 Dec;54(6):1561-70. doi: 10.1016/j.jvs.2011.06.097. Epub 2011 Sep 9.
8
Magnetizable stent-grafts enable endothelial cell capture.
J Magn Magn Mater. 2017 Apr 1;427:100-104. doi: 10.1016/j.jmmm.2016.11.007. Epub 2016 Nov 4.

引用本文的文献

1
Advancements in textile techniques for cardiovascular tissue replacement and repair.
APL Bioeng. 2024 Oct 17;8(4):041503. doi: 10.1063/5.0231856. eCollection 2024 Dec.
2
Magnetic Cell Targeting for Cardiovascular Tissue Engineering.
Tissue Eng Part B Rev. 2025 Jun;31(3):234-247. doi: 10.1089/ten.TEB.2024.0103. Epub 2024 Aug 19.
3
Magnetic and Biocompatible Polyurethane Nanofiber Biomaterial for Tissue Engineering.
Tissue Eng Part A. 2023 Aug;29(15-16):413-423. doi: 10.1089/ten.TEA.2022.0224. Epub 2023 May 30.
5
The Technological Advancement to Engineer Next-Generation Stent-Grafts: Design, Material, and Fabrication Techniques.
Adv Healthc Mater. 2022 Jul;11(13):e2200271. doi: 10.1002/adhm.202200271. Epub 2022 May 16.
6
Magnetizable stent-grafts enable endothelial cell capture.
J Magn Magn Mater. 2017 Apr 1;427:100-104. doi: 10.1016/j.jmmm.2016.11.007. Epub 2016 Nov 4.

本文引用的文献

1
Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles.
J Vis Exp. 2015 Oct 19(105):e53099. doi: 10.3791/53099.
2
Ferromagnetic Bare Metal Stent for Endothelial Cell Capture and Retention.
J Vis Exp. 2015 Sep 18(103):53100. doi: 10.3791/53100.
3
4
Design and validation of a novel ferromagnetic bare metal stent capable of capturing and retaining endothelial cells.
Ann Biomed Eng. 2014 Dec;42(12):2416-24. doi: 10.1007/s10439-014-1088-3. Epub 2014 Aug 20.
5
Electrospun scaffolds for tissue engineering of vascular grafts.
Acta Biomater. 2014 Jan;10(1):11-25. doi: 10.1016/j.actbio.2013.08.022. Epub 2013 Aug 22.
6
Endovascular management of patients with Takayasu arteritis: stents versus stent grafts.
Semin Vasc Surg. 2011 Mar;24(1):44-52. doi: 10.1053/j.semvascsurg.2011.04.002.
7
Geometry parameterization and multidisciplinary constrained optimization of coronary stents.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):61-82. doi: 10.1007/s10237-011-0293-3. Epub 2011 Mar 4.
9
Covered Cheatham-Platinum stents for serial dilation of severe native aortic coarctation.
Catheter Cardiovasc Interv. 2009 Jul 1;74(1):117-23. doi: 10.1002/ccd.21923.
10
Development of nanofiber-covered stents using electrospinning: in vitro and acute phase in vivo experiments.
J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):230-9. doi: 10.1002/jbm.b.31173.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验