Institute of Nanoscience, Nanotechnology and Molecular Materials, Universidad de Castilla-La Mancha , Campus de la Fábrica de Armas, 45071 Toledo, Spain.
A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , 28 Vavilova Street, Moscow 119991, Russia.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11739-11748. doi: 10.1021/acsami.6b15717. Epub 2017 Mar 23.
Herein we report the synthesis of a novel A-D-A-D-A non-fullerene small-molecule acceptor (NFSMA) bearing a diketopyrrolopyrrole (DPP) acceptor central core coupled to terminal rhodanine acceptors via a thiophene donor linker (denoted as MPU1) for use in non-fullerene polymer solar cells (PSCs). This NFSMA exhibits a narrow optical band gap (1.48 eV), strong absorption in the 600-800 nm wavelength region of the solar spectrum, and a lowest unoccupied energy level of -3.99 eV. When the mixture of a medium band gap D-A copolymer P (1.75 eV) was used as donor and MPU1 as acceptor, the blend film showed a broad absorption profile from 400 to 850 nm, beneficial for light harvesting efficiency of the resulted polymer solar cell. After optimization of the donor-to-acceptor weight ratios and concentration of solvent additive, the P-MPU1-based PSC exhibited a power conversion efficiency of 7.52% (J= 12.37 mA/cm, V = 0.98 V, and fill factor = 0.62), which is much higher than that for a P3HT-MPU1-based device (2.16%) prepared under identical conditions. The higher value for the P-MPU1-based device relative to the P3HT-MPU1-based one is related to the low energy loss and more balanced charge transport in the device based on the P donor. These results indicate that alteration of the absorption spectra and electrochemical energy levels of non-fullerene acceptors, and appropriate selection of the polymer donor with complementary absorption profile, is a promising means to further boost the performance of PSCs.
在此,我们报告了一种新型的 A-D-A-D-A 非富勒烯小分子受体(NFSMA)的合成,该受体含有二酮吡咯并吡咯(DPP)受体中心核心,通过噻吩供体连接体与末端硫代罗丹宁受体相连(表示为 MPU1),用于非富勒烯聚合物太阳能电池(PSC)。该 NFSMA 具有较窄的光学带隙(1.48 eV),在太阳光谱的 600-800nm 波长区域具有强烈的吸收,最低未占据能级为-3.99 eV。当使用中等带隙 D-A 共聚物 P(1.75 eV)作为供体和 MPU1 作为受体的混合物时,共混膜显示出从 400nm 到 850nm 的宽吸收轮廓,有利于所得聚合物太阳能电池的光收集效率。在优化供体-受体重量比和溶剂添加剂浓度后,基于 P-MPU1 的 PSC 表现出 7.52%的功率转换效率(J=12.37mA/cm,V=0.98V,填充因子=0.62),明显高于在相同条件下制备的基于 P3HT-MPU1 的器件(2.16%)。基于 P 供体的器件的 P-MPU1 基器件的值高于基于 P3HT-MPU1 的器件的值,这与器件中低能量损失和更平衡的电荷输运有关。这些结果表明,改变非富勒烯受体的吸收光谱和电化学能级,并适当选择具有互补吸收谱的聚合物供体,是进一步提高 PSC 性能的一种有前途的方法。