Suppr超能文献

用于基于稀疏表示的去马赛克的优化彩色滤光片阵列

Optimized Color Filter Arrays for Sparse Representation-Based Demosaicking.

出版信息

IEEE Trans Image Process. 2017 May;26(5):2381-2393. doi: 10.1109/TIP.2017.2679440. Epub 2017 Mar 8.

Abstract

Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation-based demosaicking has been shown to produce superior reconstruction quality. However, almost all existing algorithms in this category use the CFAs, which are not specifically optimized for the algorithms. In this paper, we consider optimally designing CFAs for sparse representation-based demosaicking, where the dictionary is well-chosen. The fact that CFAs correspond to the projection matrices used in compressed sensing inspires us to optimize CFAs via minimizing the mutual coherence. This is more challenging than that for traditional projection matrices because CFAs have physical realizability constraints. However, most of the existing methods for minimizing the mutual coherence require that the projection matrices should be unconstrained, making them inapplicable for designing CFAs. We consider directly minimizing the mutual coherence with the CFA's physical realizability constraints as a generalized fractional programming problem, which needs to find sufficiently accurate solutions to a sequence of nonconvex nonsmooth minimization problems. We adapt the redistributed proximal bundle method to address this issue. Experiments on benchmark images testify to the superiority of the proposed method. In particular, we show that a simple sparse representation-based demosaicking algorithm with our specifically optimized CFA can outperform LSSC [1]. To the best of our knowledge, it is the first sparse representation-based demosaicking algorithm that beats LSSC in terms of CPSNR.

摘要

去马赛克是指从数字彩色相机拍摄的原始图像中重建彩色图像的问题,该相机使用彩色滤光片阵列(CFA)覆盖其唯一的成像传感器。基于稀疏表示的去马赛克已被证明能产生卓越的重建质量。然而,这类中几乎所有现有的算法都使用CFA,而这些CFA并非针对算法进行专门优化。在本文中,我们考虑为基于稀疏表示的去马赛克优化设计CFA,其中字典经过精心选择。CFA对应于压缩感知中使用的投影矩阵这一事实启发我们通过最小化互相关来优化CFA。这比传统投影矩阵更具挑战性,因为CFA具有物理可实现性约束。然而,大多数现有的最小化互相关的方法要求投影矩阵不受约束,这使得它们不适用于设计CFA。我们将直接最小化具有CFA物理可实现性约束的互相关视为一个广义分数规划问题,这需要找到一系列非凸非光滑最小化问题的足够精确的解。我们采用重新分布的近端束方法来解决这个问题。在基准图像上的实验证明了所提方法的优越性。特别是,我们表明,使用我们专门优化的CFA的简单基于稀疏表示的去马赛克算法可以优于LSSC [1]。据我们所知,这是第一种在CPSNR方面击败LSSC的基于稀疏表示的去马赛克算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验