Suppr超能文献

HRDetect是一种基于突变特征的BRCA1和BRCA2缺陷预测指标。

HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.

作者信息

Davies Helen, Glodzik Dominik, Morganella Sandro, Yates Lucy R, Staaf Johan, Zou Xueqing, Ramakrishna Manasa, Martin Sancha, Boyault Sandrine, Sieuwerts Anieta M, Simpson Peter T, King Tari A, Raine Keiran, Eyfjord Jorunn E, Kong Gu, Borg Åke, Birney Ewan, Stunnenberg Hendrik G, van de Vijver Marc J, Børresen-Dale Anne-Lise, Martens John W M, Span Paul N, Lakhani Sunil R, Vincent-Salomon Anne, Sotiriou Christos, Tutt Andrew, Thompson Alastair M, Van Laere Steven, Richardson Andrea L, Viari Alain, Campbell Peter J, Stratton Michael R, Nik-Zainal Serena

机构信息

Wellcome Trust Sanger Institute, Hinxton, UK.

Guy's and St Thomas' NHS Trust, London, UK.

出版信息

Nat Med. 2017 Apr;23(4):517-525. doi: 10.1038/nm.4292. Epub 2017 Mar 13.

Abstract

Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought. Recently, somatic substitution, insertion/deletion and rearrangement patterns, or 'mutational signatures', were associated with BRCA1/BRCA2 dysfunction. Herein we used a lasso logistic regression model to identify six distinguishing mutational signatures predictive of BRCA1/BRCA2 deficiency. A weighted model called HRDetect was developed to accurately detect BRCA1/BRCA2-deficient samples. HRDetect identifies BRCA1/BRCA2-deficient tumors with 98.7% sensitivity (area under the curve (AUC) = 0.98). Application of this model in a cohort of 560 individuals with breast cancer, of whom 22 were known to carry a germline BRCA1 or BRCA2 mutation, allowed us to identify an additional 22 tumors with somatic loss of BRCA1 or BRCA2 and 47 tumors with functional BRCA1/BRCA2 deficiency where no mutation was detected. We validated HRDetect on independent cohorts of breast, ovarian and pancreatic cancers and demonstrated its efficacy in alternative sequencing strategies. Integrating all of the classes of mutational signatures thus reveals a larger proportion of individuals with breast cancer harboring BRCA1/BRCA2 deficiency (up to 22%) than hitherto appreciated (∼1-5%) who could have selective therapeutic sensitivity to PARP inhibition.

摘要

大约1%-5%的乳腺癌归因于BRCA1或BRCA2的遗传性突变,并且对聚(ADP-核糖)聚合酶(PARP)抑制剂具有选择性敏感性。在其他癌症类型中,BRCA1和/或BRCA2(BRCA1/BRCA2)的种系和/或体细胞突变也赋予对PARP抑制剂的选择性敏感性。因此,人们一直在寻找检测BRCA1/BRCA2缺陷肿瘤的检测方法。最近,体细胞替代、插入/缺失和重排模式,即“突变特征”,与BRCA1/BRCA2功能障碍相关。在此,我们使用套索逻辑回归模型来识别六个区分BRCA1/BRCA2缺陷的预测性突变特征。开发了一种名为HRDetect的加权模型,以准确检测BRCA1/BRCA2缺陷样本。HRDetect识别BRCA1/BRCA2缺陷肿瘤的灵敏度为98.7%(曲线下面积(AUC)=0.98)。在560名乳腺癌患者队列中应用该模型,其中22名已知携带种系BRCA1或BRCA2突变,使我们能够识别出另外22例BRCA1或BRCA2体细胞缺失的肿瘤以及47例未检测到突变但具有功能性BRCA1/BRCA2缺陷的肿瘤。我们在乳腺癌、卵巢癌和胰腺癌的独立队列中验证了HRDetect,并证明了其在替代测序策略中的有效性。整合所有类型的突变特征,从而揭示出携带BRCA1/BRCA2缺陷的乳腺癌患者比例(高达22%)比迄今所认识到的(约1%-5%)更大,这些患者可能对PARP抑制具有选择性治疗敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验