Suppr超能文献

癌症治疗中的类器官:全面综述

Organoids in cancer therapies: a comprehensive review.

作者信息

Xin-Yi Jiang, Yan-Ran Wang, Pin-Ru Di, Shi-Yi Qian, Hai-Tao Jiang

机构信息

School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China.

出版信息

Front Bioeng Biotechnol. 2025 Jul 22;13:1607488. doi: 10.3389/fbioe.2025.1607488. eCollection 2025.

Abstract

Organoid technology has significantly advanced biomedical research, offering deep insights into tumor biology and therapeutic efficacy. While existing publications have covered organoid applications, this review uniquely stresses their transformative role in cancer research. We highlight their importance in studying intratumoral heterogeneity and microenvironment interactions. Our analysis addresses knowledge gaps by detailing how organoids function as models in cancer initiation, drug screening, target identification, and sensitivity assessment. We also explore their applications in personalized medicine, such as developing patient-derived models for treatment prediction and immune therapy evaluation. This review discusses the latest progress in using organoids for cancer treatment, like predicting patient responses to precision medicine. However, challenges remain, including maintaining genetic stability and mimicking conditions. By addressing these limitations, this review provides a novel perspective on how organoid technology may overcome current barriers and drive innovation in cancer therapy. Our analysis suggests that advancements in organoid systems could enhance personalized treatment strategies and improve oncology patient outcomes.

摘要

类器官技术极大地推动了生物医学研究,为肿瘤生物学和治疗效果提供了深入见解。虽然现有出版物涵盖了类器官的应用,但本综述独特地强调了它们在癌症研究中的变革性作用。我们强调了它们在研究肿瘤内异质性和微环境相互作用方面的重要性。我们的分析通过详细阐述类器官在癌症起始、药物筛选、靶点识别和敏感性评估中作为模型的功能,填补了知识空白。我们还探讨了它们在个性化医学中的应用,例如开发患者来源的模型用于治疗预测和免疫治疗评估。本综述讨论了使用类器官进行癌症治疗的最新进展,如预测患者对精准医学的反应。然而,挑战依然存在,包括维持基因稳定性和模拟条件。通过解决这些局限性,本综述为类器官技术如何克服当前障碍并推动癌症治疗创新提供了新的视角。我们的分析表明,类器官系统的进步可以增强个性化治疗策略并改善肿瘤患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7e1/12322668/4dbb66e3b5e6/fbioe-13-1607488-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验