Collis Joe, Connor Anthony J, Paczkowski Marcin, Kannan Pavitra, Pitt-Francis Joe, Byrne Helen M, Hubbard Matthew E
School of Mathematical Sciences, University of Nottingham, Nottingham, UK.
Mathematical Institute, University of Oxford, Oxford, UK.
Bull Math Biol. 2017 Apr;79(4):939-974. doi: 10.1007/s11538-017-0258-5. Epub 2017 Mar 13.
In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model.
在这项工作中,我们给出了一个具有教学意义的肿瘤生长示例,其中我们将校准和验证技术应用于一个不确定的、描述肿瘤球体生长的冈珀茨模型。本文的关键贡献在于,在一个简单模型的背景下讨论并应用了这些方法(这些方法在癌症建模领域并不常用),该模型的确定性类似物在该领域广为人知。在这个示例过程中,我们根据存在测量误差的实验数据对模型进行校准,然后验证所得不确定模型的预测结果。接着,我们分析模型预测结果对基础测量模型的敏感性。最后,我们提出一种基本的学习方法,用于在验证过程中调整一个阈值参数,以最大化我们验证模型的预测准确性。