Suppr超能文献

经典、分数阶和多尺度肿瘤生长逻辑模型的校准和不确定性量化分析。

A calibration and uncertainty quantification analysis of classical, fractional and multiscale logistic models of tumour growth.

机构信息

Department of Bioengineering, McGill University, Montreal, H3A 0E9, QC, Canada.

Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus.

出版信息

Comput Methods Programs Biomed. 2024 Jan;243:107920. doi: 10.1016/j.cmpb.2023.107920. Epub 2023 Nov 10.

Abstract

BACKGROUND AND OBJECTIVE

The validation of mathematical models of tumour growth is frequently hampered by the lack of sufficient experimental data, resulting in qualitative rather than quantitative studies. Recent approaches to this problem have attempted to extract information about tumour growth by integrating multiscale experimental measurements, such as longitudinal cell counts and gene expression data. In the present study, we investigated the performance of several mathematical models of tumour growth, including classical logistic, fractional and novel multiscale models, in terms of quantifying in-vitro tumour growth in the presence and absence of therapy. We further examined the effect of genes associated with changes in chemosensitivity in cell death rates.

METHODS

The multiscale expansion of logistic growth models was performed by coupling gene expression profiles to the cell death rates. State-of-the-art Bayesian inference, likelihood maximisation and uncertainty quantification techniques allowed a thorough evaluation of model performance.

RESULTS

The results suggest that the classical single-cell population model (SCPM) was the best fit for the untreated and low-dose treatment conditions, while the multiscale model with a cell death rate symmetric with the expression profile of OCT4 (Sym-SCPM) yielded the best fit for the high-dose treatment data. Further identifiability analysis showed that the multiscale model was both structurally and practically identifiable under the condition of known OCT4 expression profiles.

CONCLUSIONS

Overall, the present study demonstrates that model performance can be improved by incorporating multiscale measurements of tumour growth when high-dose treatment is involved.

摘要

背景与目的

肿瘤生长的数学模型验证常常受到缺乏充足实验数据的阻碍,导致研究结果仅为定性而非定量。最近的解决这一问题的方法试图通过整合多尺度实验测量(如纵向细胞计数和基因表达数据)来提取关于肿瘤生长的信息。在本研究中,我们调查了几种肿瘤生长的数学模型(包括经典的逻辑斯谛模型、分数阶模型和新颖的多尺度模型)的性能,以定量描述在存在和不存在治疗的情况下的体外肿瘤生长。我们进一步研究了与化疗敏感性变化相关的基因对细胞死亡率的影响。

方法

通过将基因表达谱与细胞死亡率耦合,对逻辑斯谛生长模型进行多尺度扩展。最先进的贝叶斯推断、似然最大化和不确定性量化技术允许对模型性能进行全面评估。

结果

结果表明,经典的单细胞群体模型(SCPM)最适合未处理和低剂量治疗条件,而具有与 OCT4 表达谱对称的细胞死亡率的多尺度模型(Sym-SCPM)最适合高剂量治疗数据。进一步的可识别性分析表明,在已知 OCT4 表达谱的条件下,多尺度模型在结构和实际方面都是可识别的。

结论

总的来说,本研究表明,当涉及高剂量治疗时,通过纳入肿瘤生长的多尺度测量,可以提高模型性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验