Center for Gerontology and Healthcare Research, Brown University, Providence, RI, USA.
Center for Statistical Sciences, Brown University, Providence, RI, USA.
Med Decis Making. 2022 Jul;42(5):557-570. doi: 10.1177/0272989X221085569. Epub 2022 Mar 21.
Mathematical health policy models, including microsimulation models (MSMs), are widely used to simulate complex processes and predict outcomes consistent with available data. Calibration is a method to estimate parameter values such that model predictions are similar to observed outcomes of interest. Bayesian calibration methods are popular among the available calibration techniques, given their strong theoretical basis and flexibility to incorporate prior beliefs and draw values from the posterior distribution of model parameters and hence the ability to characterize and evaluate parameter uncertainty in the model outcomes. Approximate Bayesian computation (ABC) is an approach to calibrate complex models in which the likelihood is intractable, focusing on measuring the difference between the simulated model predictions and outcomes of interest in observed data. Although ABC methods are increasingly being used, there is limited practical guidance in the medical decision-making literature on approaches to implement ABC to calibrate MSMs. In this tutorial, we describe the Bayesian calibration framework, introduce the ABC approach, and provide step-by-step guidance for implementing an ABC algorithm to calibrate MSMs, using 2 case examples based on a microsimulation model for dementia. We also provide the R code for applying these methods.
数学健康政策模型,包括微观模拟模型(MSM),被广泛用于模拟复杂过程并预测与可用数据一致的结果。校准是一种估计参数值的方法,以使模型预测与感兴趣的观察结果相似。贝叶斯校准方法在可用的校准技术中很受欢迎,因为它们具有很强的理论基础,并且能够灵活地结合先验信念,并从模型参数的后验分布中抽取值,从而能够描述和评估模型结果中的参数不确定性。近似贝叶斯计算(ABC)是一种用于校准复杂模型的方法,其中似然函数难以处理,重点是测量模拟模型预测值与观察数据中感兴趣的结果之间的差异。尽管 ABC 方法越来越多地被使用,但在医学决策文献中,关于实施 ABC 来校准 MSM 的方法的实用指南有限。在本教程中,我们描述了贝叶斯校准框架,介绍了 ABC 方法,并提供了使用基于痴呆症的微观模拟模型的 2 个案例示例来实施 ABC 算法来校准 MSM 的分步指导,还提供了应用这些方法的 R 代码。