Suppr超能文献

使用 R 中的近似贝叶斯计算进行微观模拟模型校准:教程。

Microsimulation Model Calibration with Approximate Bayesian Computation in R: A Tutorial.

机构信息

Center for Gerontology and Healthcare Research, Brown University, Providence, RI, USA.

Center for Statistical Sciences, Brown University, Providence, RI, USA.

出版信息

Med Decis Making. 2022 Jul;42(5):557-570. doi: 10.1177/0272989X221085569. Epub 2022 Mar 21.

Abstract

Mathematical health policy models, including microsimulation models (MSMs), are widely used to simulate complex processes and predict outcomes consistent with available data. Calibration is a method to estimate parameter values such that model predictions are similar to observed outcomes of interest. Bayesian calibration methods are popular among the available calibration techniques, given their strong theoretical basis and flexibility to incorporate prior beliefs and draw values from the posterior distribution of model parameters and hence the ability to characterize and evaluate parameter uncertainty in the model outcomes. Approximate Bayesian computation (ABC) is an approach to calibrate complex models in which the likelihood is intractable, focusing on measuring the difference between the simulated model predictions and outcomes of interest in observed data. Although ABC methods are increasingly being used, there is limited practical guidance in the medical decision-making literature on approaches to implement ABC to calibrate MSMs. In this tutorial, we describe the Bayesian calibration framework, introduce the ABC approach, and provide step-by-step guidance for implementing an ABC algorithm to calibrate MSMs, using 2 case examples based on a microsimulation model for dementia. We also provide the R code for applying these methods.

摘要

数学健康政策模型,包括微观模拟模型(MSM),被广泛用于模拟复杂过程并预测与可用数据一致的结果。校准是一种估计参数值的方法,以使模型预测与感兴趣的观察结果相似。贝叶斯校准方法在可用的校准技术中很受欢迎,因为它们具有很强的理论基础,并且能够灵活地结合先验信念,并从模型参数的后验分布中抽取值,从而能够描述和评估模型结果中的参数不确定性。近似贝叶斯计算(ABC)是一种用于校准复杂模型的方法,其中似然函数难以处理,重点是测量模拟模型预测值与观察数据中感兴趣的结果之间的差异。尽管 ABC 方法越来越多地被使用,但在医学决策文献中,关于实施 ABC 来校准 MSM 的方法的实用指南有限。在本教程中,我们描述了贝叶斯校准框架,介绍了 ABC 方法,并提供了使用基于痴呆症的微观模拟模型的 2 个案例示例来实施 ABC 算法来校准 MSM 的分步指导,还提供了应用这些方法的 R 代码。

相似文献

1
Microsimulation Model Calibration with Approximate Bayesian Computation in R: A Tutorial.
Med Decis Making. 2022 Jul;42(5):557-570. doi: 10.1177/0272989X221085569. Epub 2022 Mar 21.
2
Bayesian versus Empirical Calibration of Microsimulation Models: A Comparative Analysis.
Med Decis Making. 2021 Aug;41(6):714-726. doi: 10.1177/0272989X211009161. Epub 2021 May 8.
3
MICROSIMULATION MODEL CALIBRATION USING INCREMENTAL MIXTURE APPROXIMATE BAYESIAN COMPUTATION.
Ann Appl Stat. 2019 Dec;13(4):2189-2212. doi: 10.1214/19-aoas1279. Epub 2019 Nov 28.
4
5
Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10.
6
Bayesian Methods for Calibrating Health Policy Models: A Tutorial.
Pharmacoeconomics. 2017 Jun;35(6):613-624. doi: 10.1007/s40273-017-0494-4.
7
Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.
Stat Appl Genet Mol Biol. 2013 May 6;12(2):129-41. doi: 10.1515/sagmb-2013-0010.
8
Approximate Bayesian Computation for infectious disease modelling.
Epidemics. 2019 Dec;29:100368. doi: 10.1016/j.epidem.2019.100368. Epub 2019 Sep 25.
9
A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation.
Math Biosci. 2017 May;287:42-53. doi: 10.1016/j.mbs.2016.07.001. Epub 2016 Jul 18.
10
Bayesian Calibration of Microsimulation Models.
J Am Stat Assoc. 2009 Dec 1;104(488):1338-1350. doi: 10.1198/jasa.2009.ap07466.

引用本文的文献

3
Cost effectiveness of non-drug interventions that reduce nursing home admissions for people living with dementia.
Alzheimers Dement. 2023 Sep;19(9):3867-3893. doi: 10.1002/alz.12964. Epub 2023 Apr 6.
4
Predicting and preventing COVID-19 outbreaks in indoor environments: an agent-based modeling study.
Sci Rep. 2022 Sep 27;12(1):16076. doi: 10.1038/s41598-022-18284-8.

本文引用的文献

1
MICROSIMULATION MODEL CALIBRATION USING INCREMENTAL MIXTURE APPROXIMATE BAYESIAN COMPUTATION.
Ann Appl Stat. 2019 Dec;13(4):2189-2212. doi: 10.1214/19-aoas1279. Epub 2019 Nov 28.
2
Bayesian versus Empirical Calibration of Microsimulation Models: A Comparative Analysis.
Med Decis Making. 2021 Aug;41(6):714-726. doi: 10.1177/0272989X211009161. Epub 2021 May 8.
3
Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial.
Med Decis Making. 2018 Apr;38(3):400-422. doi: 10.1177/0272989X18754513.
4
Bayesian Methods for Calibrating Health Policy Models: A Tutorial.
Pharmacoeconomics. 2017 Jun;35(6):613-624. doi: 10.1007/s40273-017-0494-4.
5
Survival after dementia diagnosis in five racial/ethnic groups.
Alzheimers Dement. 2017 Jul;13(7):761-769. doi: 10.1016/j.jalz.2016.12.008. Epub 2017 Feb 5.
7
Simulation-based Bayesian Analysis of Complex Data.
Summer Comput Simul Conf (2015). 2015 Dec;47(10):176-183.
9
Approximate Bayesian computation.
PLoS Comput Biol. 2013;9(1):e1002803. doi: 10.1371/journal.pcbi.1002803. Epub 2013 Jan 10.
10
Calibrating models in economic evaluation: a seven-step approach.
Pharmacoeconomics. 2011 Jan;29(1):35-49. doi: 10.2165/11584600-000000000-00000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验