Suppr超能文献

石墨相氮化碳的声光电催化降解双酚 A 及其中间产物。

Sonophotocatalytic degradation of bisphenol A and its intermediates with graphitic carbon nitride.

机构信息

Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.

Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia.

出版信息

Environ Sci Pollut Res Int. 2019 Jan;26(2):1082-1093. doi: 10.1007/s11356-017-8729-7. Epub 2017 Mar 13.

Abstract

Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-CN, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.

摘要

由于双酚 A(BPA)在水体系中表现出内分泌干扰作用和高毒性,因此人们强烈要求将其完全去除。在这项研究中,采用基于超声波(US)和可见光(Vis-L)的能量型高级氧化工艺(AOP),通过各种批处理实验,利用纳米结构石墨相氮化碳(g-CN,GCN)进行了光声催化去除 BPA 的实验。批处理实验结果表明,基于 GCN 的声光催化(Vis-L/US)比其他 AOP 具有更高的速率常数,特别是比 TiO2 基 Vis-L/US 的降解速率高两倍。这一结果推断出,由于其表面可以被 Vis-L 激活,从而将电子从价带(VB)转移到 VB 中,用于利用空穴(h)去除 BPA,因此 GCN 在 Vis-L/US 中具有有效的催化活性。此外,US 辐射有效地剥离了 GCN。通过使用高效液相色谱-质谱联用仪(HPLC/MS)详细研究了 BPA 中间体的形成。提出了 BPA 的可能降解途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验