Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University , Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
Particles and Catalysis Research Group (PARTCAT), School of Chemical Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia.
Chem Rev. 2016 Jun 22;116(12):7159-329. doi: 10.1021/acs.chemrev.6b00075. Epub 2016 May 20.
As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and "earth-abundant" nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The construction and characteristics of each classification of the heterojunction system will be critically reviewed, namely metal-g-C3N4, semiconductor-g-C3N4, isotype g-C3N4/g-C3N4, graphitic carbon-g-C3N4, conducting polymer-g-C3N4, sensitizer-g-C3N4, and multicomponent heterojunctions. The band structures, electronic properties, optical absorption, and interfacial charge transfer of g-C3N4-based heterostructured nanohybrids will also be theoretically discussed based on the first-principles density functional theory (DFT) calculations to provide insightful outlooks on the charge carrier dynamics. Apart from that, the advancement of the versatile photoredox applications toward artificial photosynthesis (water splitting and photofixation of CO2), environmental decontamination, and bacteria disinfection will be presented in detail. Last but not least, this comprehensive review will conclude with a summary and some invigorating perspectives on the challenges and future directions at the forefront of this research platform. It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
作为一种引人入胜的共轭聚合物,石墨相氮化碳(g-C3N4)已成为金属-free 和可见光响应光催化剂在太阳能转换和环境修复领域的新研究热点,并吸引了广泛的跨学科关注。这是由于其吸引人的电子能带结构、高物理化学稳定性和“丰富的地球”性质。这篇评论总结了有关原始 g-C3N4 和基于 g-C3N4 的纳米复合材料的设计和构建的最新进展的全景,包括(1)裸 g-C3N4 的纳米结构设计,例如硬模板和软模板方法、超分子预组织组装、剥离和无模板合成路线,(2)原子级(元素掺杂)和分子级(共聚)的 g-C3N4 功能化,以及(3)与另一种半导体或金属具有良好匹配能级的 g-C3N4 修饰作为共催化剂形成异质结纳米结构。将批判性地审查每种分类的异质结系统的构建和特性,即金属-g-C3N4、半导体-g-C3N4、同型 g-C3N4/g-C3N4、石墨碳-g-C3N4、导电聚合物-g-C3N4、敏化剂-g-C3N4 和多组分异质结。还将根据第一性原理密度泛函理论(DFT)计算对基于 g-C3N4 的异质结构纳米杂化物的能带结构、电子特性、光学吸收和界面电荷转移进行理论讨论,以提供对载流子动力学的有见地的观点。除此之外,还将详细介绍多功能光还原应用在人工光合作用(水分解和 CO2 光固定)、环境净化和细菌消毒方面的进展。最后但同样重要的是,本综述将以对该研究平台前沿面临的挑战和未来方向的总结和一些振奋人心的观点结束。预计,本综述将为通过利用卓越的结构、电子和光学性能来促进下一代基于 g-C3N4 的光催化剂的发展,为没有环境损害的可持续未来铺平道路,从而激发新的研究途径。