Suppr超能文献

使用新型非侵入性传感器测量重症监护病房患者的活动能力

Measuring Patient Mobility in the ICU Using a Novel Noninvasive Sensor.

作者信息

Ma Andy J, Rawat Nishi, Reiter Austin, Shrock Christine, Zhan Andong, Stone Alex, Rabiee Anahita, Griffin Stephanie, Needham Dale M, Saria Suchi

机构信息

1Department of Computer Science, Johns Hopkins University, Baltimore, MD.2Department of Anesthesia and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.3Armstrong Institute for Patient Safety and Quality, Johns Hopkins University School of Medicine, Baltimore, MD.4Johns Hopkins University School of Medicine, Baltimore, MD.5Outcomes after Critical Illness and Surgery Group, John Hopkins University School of Medicine, Baltimore, MD.6Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.7John Hopkins Hospital, Baltimore, MD.8Department of Physical Medicine and Rehabilitation, John Hopkins University School of Medicine, Baltimore, MD.9Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD.

出版信息

Crit Care Med. 2017 Apr;45(4):630-636. doi: 10.1097/CCM.0000000000002265.

Abstract

OBJECTIVES

To develop and validate a noninvasive mobility sensor to automatically and continuously detect and measure patient mobility in the ICU.

DESIGN

Prospective, observational study.

SETTING

Surgical ICU at an academic hospital.

PATIENTS

Three hundred sixty-two hours of sensor color and depth image data were recorded and curated into 109 segments, each containing 1,000 images, from eight patients.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Three Microsoft Kinect sensors (Microsoft, Beijing, China) were deployed in one ICU room to collect continuous patient mobility data. We developed software that automatically analyzes the sensor data to measure mobility and assign the highest level within a time period. To characterize the highest mobility level, a validated 11-point mobility scale was collapsed into four categories: nothing in bed, in-bed activity, out-of-bed activity, and walking. Of the 109 sensor segments, the noninvasive mobility sensor was developed using 26 of these from three ICU patients and validated on 83 remaining segments from five different patients. Three physicians annotated each segment for the highest mobility level. The weighted Kappa (κ) statistic for agreement between automated noninvasive mobility sensor output versus manual physician annotation was 0.86 (95% CI, 0.72-1.00). Disagreement primarily occurred in the "nothing in bed" versus "in-bed activity" categories because "the sensor assessed movement continuously," which was significantly more sensitive to motion than physician annotations using a discrete manual scale.

CONCLUSIONS

Noninvasive mobility sensor is a novel and feasible method for automating evaluation of ICU patient mobility.

摘要

目的

开发并验证一种非侵入性移动传感器,以自动、连续地检测和测量重症监护病房(ICU)患者的活动情况。

设计

前瞻性观察研究。

地点

一所学术医院的外科重症监护病房。

患者

记录了8名患者的362小时传感器彩色和深度图像数据,并整理成109个片段,每个片段包含1000张图像。

干预措施

无。

测量指标及主要结果

在一间ICU病房部署了3个微软Kinect传感器(微软,中国北京),以收集患者连续的活动数据。我们开发了软件,可自动分析传感器数据以测量活动情况,并在一段时间内确定最高活动水平。为了描述最高活动水平,将经过验证的11点活动量表归纳为四类:卧床不动、床上活动、床下活动和行走。在这109个传感器片段中,非侵入性移动传感器是利用3名ICU患者的26个片段开发的,并在来自5名不同患者的其余83个片段上进行了验证。三名医生对每个片段的最高活动水平进行标注。自动非侵入性移动传感器输出与医生手动标注之间一致性的加权Kappa(κ)统计量为0.86(95%CI,0.72 - 1.00)。不一致主要发生在“卧床不动”和“床上活动”类别之间,因为“传感器持续评估运动”,这对运动的敏感度明显高于医生使用离散手动量表的标注。

结论

非侵入性移动传感器是一种用于自动评估ICU患者活动情况的新颖且可行的方法。

相似文献

7
Patient walk detection in hospital room using Microsoft Kinect V2.使用微软Kinect V2在医院病房中进行患者行走检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4395-4398. doi: 10.1109/EMBC.2016.7591701.
10
Feasibility and inter-rater reliability of the ICU Mobility Scale.ICU 活动量表的可行性和组内信度。
Heart Lung. 2014 Jan-Feb;43(1):19-24. doi: 10.1016/j.hrtlng.2013.11.003. Epub 2013 Nov 19.

引用本文的文献

3
Potentials and Challenges of Pervasive Sensing in the Intensive Care Unit.重症监护病房中普适传感的潜力与挑战
Front Digit Health. 2022 May 17;4:773387. doi: 10.3389/fdgth.2022.773387. eCollection 2022.
5
Deep learning-enabled medical computer vision.基于深度学习的医学计算机视觉。
NPJ Digit Med. 2021 Jan 8;4(1):5. doi: 10.1038/s41746-020-00376-2.
7
Recent advances in the technology of anesthesia.麻醉技术的最新进展。
F1000Res. 2020 May 18;9. doi: 10.12688/f1000research.24059.1. eCollection 2020.
9
CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer Assisted Interventions.CAI4CAI:计算机辅助干预中情境人工智能的兴起
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):198-214. doi: 10.1109/JPROC.2019.2946993. Epub 2019 Oct 23.

本文引用的文献

5
9
Fall detection in homes of older adults using the Microsoft Kinect.使用微软Kinect在老年人家庭中进行跌倒检测。
IEEE J Biomed Health Inform. 2015 Jan;19(1):290-301. doi: 10.1109/JBHI.2014.2312180. Epub 2014 Mar 17.
10
Feasibility and inter-rater reliability of the ICU Mobility Scale.ICU 活动量表的可行性和组内信度。
Heart Lung. 2014 Jan-Feb;43(1):19-24. doi: 10.1016/j.hrtlng.2013.11.003. Epub 2013 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验