Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, PR China.
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.
Nanoscale. 2017 Mar 23;9(12):4236-4243. doi: 10.1039/c6nr08375g.
Despite being the most commonly used hole transport layer for p-i-n perovskite solar cells, the conventional PEDOT:PSS layer is far from being optimal for the best photovoltaic performance. Herein, we demonstrate highly conductive thin DMSO-doped PEDOT:PSS layers which significantly enhance the light harvesting, charge extraction, and photocurrent production of organo-lead iodide devices. Both imaging and X-ray analysis reveal that the perovskite thin films grown on DMSO-doped PEDOT:PSS exhibit larger grains with increased crystallinity. Altogether, these improvements result in a 37% boost in the power conversion efficiency (PCE) compared to standard p-i-n photovoltaics with pristine PEDOT:PSS. Furthermore, we demonstrate that DMSO-doped PEDOT:PSS devices possess enhanced PCE durability over time which we attribute primarily to fill factor stability.
尽管 PEDOT:PSS 是最常用于 p-i-n 钙钛矿太阳能电池的空穴传输层,但对于最佳光伏性能而言,传统的 PEDOT:PSS 层远非理想选择。在此,我们展示了高导电性的 DMSO 掺杂 PEDOT:PSS 薄层,其显著提高了有机铅卤器件的光捕获、电荷提取和光电流产生。成像和 X 射线分析都表明,在 DMSO 掺杂的 PEDOT:PSS 上生长的钙钛矿薄膜具有更大的晶粒和增加的结晶度。总的来说,与使用原始 PEDOT:PSS 的标准 p-i-n 光伏器件相比,这些改进使功率转换效率(PCE)提高了 37%。此外,我们还证明,DMSO 掺杂的 PEDOT:PSS 器件的 PCE 耐久性随时间增强,这主要归因于填充因子稳定性。