Suppr超能文献

旺卡和奥姆帕帕:蛋白质-配体相互作用数据的分析,以指导基于结构的药物设计。

WONKA and OOMMPPAA: analysis of protein-ligand interaction data to direct structure-based drug design.

机构信息

Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles, Oxford OX1 3LB, England.

Computational and Structural Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, England.

出版信息

Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):279-285. doi: 10.1107/S2059798316009529. Epub 2017 Feb 24.

Abstract

In this work, two freely available web-based interactive computational tools that facilitate the analysis and interpretation of protein-ligand interaction data are described. Firstly, WONKA, which assists in uncovering interesting and unusual features (for example residue motions) within ensembles of protein-ligand structures and enables the facile sharing of observations between scientists. Secondly, OOMMPPAA, which incorporates protein-ligand activity data with protein-ligand structural data using three-dimensional matched molecular pairs. OOMMPPAA highlights nuanced structure-activity relationships (SAR) and summarizes available protein-ligand activity data in the protein context. In this paper, the background that led to the development of both tools is described. Their implementation is outlined and their utility using in-house Structural Genomics Consortium (SGC) data sets and openly available data from the PDB and ChEMBL is described. Both tools are freely available to use and download at http://wonka.sgc.ox.ac.uk/WONKA/ and http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/.

摘要

在这项工作中,我们描述了两个免费的基于网络的交互式计算工具,它们可以方便地分析和解释蛋白质-配体相互作用数据。首先是 WONKA,它可以帮助揭示蛋白质-配体结构集合中的有趣和不寻常的特征(例如残基运动),并使科学家之间轻松共享观察结果。其次是 OOMMPPAA,它使用三维匹配分子对将蛋白质-配体活性数据与蛋白质-配体结构数据结合在一起。OOMMPPAA 突出了细微的结构-活性关系,并在蛋白质背景下总结了可用的蛋白质-配体活性数据。本文描述了开发这两个工具的背景。概述了它们的实现,并描述了它们在内部结构基因组学联合会 (SGC) 数据集和来自 PDB 和 ChEMBL 的公开可用数据中的应用。这两个工具都可以在 http://wonka.sgc.ox.ac.uk/WONKA/http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/ 免费使用和下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f21b/5349440/bc8cf12ef374/d-73-00279-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验