Dietrich Haike, Glasauer Stefan, Straka Hans
Department of Biology II and.
Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany, and.
J Neurosci. 2017 Apr 12;37(15):4032-4045. doi: 10.1523/JNEUROSCI.2626-16.2017. Epub 2017 Mar 14.
Vestibulo-ocular reflexes (VORs) are the dominating contributors to gaze stabilization in all vertebrates. During horizontal head movements, abducens motoneurons form the final element of the reflex arc that integrates visuovestibular inputs into temporally precise motor commands for the lateral rectus eye muscle. Here, we studied a possible differentiation of abducens motoneurons into subtypes by evaluating their morphology, discharge properties, and synaptic pharmacology in semi-intact preparations of larval Extracellular nerve recordings during sinusoidal head motion revealed a continuum of resting rates and activation thresholds during vestibular stimulation. Differences in the sensitivity to changing stimulus frequencies and velocities allowed subdividing abducens motoneurons into two subgroups, one encoding the frequency and velocity of head motion (Group I), and the other precisely encoding angular velocity independent of stimulus frequency (Group II). Computational modeling indicated that Group II motoneurons are the major contributor to actual eye movements over the tested stimulus range. The segregation into two functional subgroups coincides with a differential activation of glutamate receptor subtypes. Vestibular excitatory inputs in Group I motoneurons are mediated predominantly by NMDA receptors and to a lesser extent by AMPA receptors, whereas an AMPA receptor-mediated excitation prevails in Group II motoneurons. Furthermore, glycinergic ipsilateral vestibular inhibitory inputs are activated during the horizontal VOR, whereas the tonic GABAergic inhibition is presumably of extravestibular origin. These findings support the presence of physiologically and pharmacologically distinct functional subgroups of extraocular motoneurons that act in concert to mediate the large dynamic range of extraocular motor commands during gaze stabilization. Outward-directed gaze-stabilizing eye movements are commanded by abducens motoneurons that combine different sensory inputs including signals from the vestibular system about ongoing head movements (vestibulo-ocular reflex). Using an amphibian model, this study investigates whether different types of abducens motoneurons exist that become active during different types of eye movements. The outcome of this study demonstrates the presence of specific motoneuronal populations with pharmacological profiles that match their response dynamics. The evolutionary conservation of the vestibulo-ocular circuitry makes it likely that a similar motoneuronal organization is also implemented in other vertebrates. Accordingly, the physiological and pharmacological understanding of specific motoneuronal contributions to eye movements might help in designing drug therapies for human eye movement dysfunctions such as abducens nerve palsy.
前庭眼反射(VORs)是所有脊椎动物中凝视稳定的主要贡献者。在水平头部运动期间,展神经运动神经元构成反射弧的最后一个环节,该反射弧将视觉前庭输入整合为针对外直肌的时间精确的运动指令。在此,我们通过评估幼虫半完整制剂中展神经运动神经元的形态、放电特性和突触药理学,研究了展神经运动神经元可能分化为亚型的情况。在正弦头部运动期间的细胞外神经记录显示,在前庭刺激期间,静息率和激活阈值呈连续变化。对变化的刺激频率和速度的敏感性差异使得展神经运动神经元可分为两个亚组,一个亚组编码头部运动的频率和速度(I组),另一个亚组精确编码与刺激频率无关的角速度(II组)。计算模型表明,在测试的刺激范围内,II组运动神经元是实际眼球运动的主要贡献者。分为两个功能亚组与谷氨酸受体亚型的差异激活相一致。I组运动神经元中的前庭兴奋性输入主要由NMDA受体介导,在较小程度上由AMPA受体介导,而在II组运动神经元中,AMPA受体介导的兴奋占主导。此外,在水平VOR期间,甘氨酸能同侧前庭抑制性输入被激活,而持续性GABA能抑制可能起源于前庭外。这些发现支持存在生理和药理学上不同的眼外运动神经元功能亚组,它们协同作用以介导凝视稳定期间眼外运动指令的大动态范围。向外的凝视稳定眼球运动由展神经运动神经元控制,展神经运动神经元结合不同的感觉输入,包括来自前庭系统的关于正在进行的头部运动的信号(前庭眼反射)。本研究使用两栖动物模型,调查在不同类型的眼球运动期间是否存在不同类型的展神经运动神经元变得活跃。本研究的结果表明存在具有与它们的反应动力学相匹配的药理学特征的特定运动神经元群体。前庭眼回路的进化保守性使得其他脊椎动物也可能存在类似的运动神经元组织。因此,对特定运动神经元对眼球运动贡献的生理和药理学理解可能有助于设计针对人类眼球运动功能障碍(如展神经麻痹)的药物治疗方法。