Suppr超能文献

清醒小鼠展神经核神经元的动力学

Dynamics of abducens nucleus neurons in the awake mouse.

机构信息

Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.

出版信息

J Neurophysiol. 2012 Nov;108(9):2509-23. doi: 10.1152/jn.00249.2012. Epub 2012 Aug 15.

Abstract

The mechanics of the eyeball and orbital tissues (the "ocular motor plant") are a fundamental determinant of ocular motor signal processing. The mouse is used increasingly in ocular motor physiology, but little is known about its plant mechanics. One way to characterize the mechanics is to determine relationships between extraocular motoneuron firing and eye movement. We recorded abducens nucleus neurons in mice executing compensatory eye movements during 0.1- to 1.6-Hz oscillation in the light. We analyzed firing rates to extract eye position and eye velocity sensitivities, from which we determined time constants of a viscoelastic model of the plant. The majority of abducens neurons were already active with the eye in its central rest position, with only 6% recruited at more abducted positions. Firing rates exhibited largely linear relationships to eye movement, although there was a nonlinearity consisting of increasing modulation in proportion to eye movement as eye amplitudes became small (due to reduced stimulus amplitude or reduced alertness). Eye position and velocity sensitivities changed with stimulus frequency as expected for an ocular motor plant dominated by cascaded viscoelasticities. Transfer function poles lay at approximately 0.1 and 0.9 s. Compared with previously studied animal species, the mouse plant is stiffer than the rabbit but laxer than cat and rhesus. Differences between mouse and rabbit can be explained by scaling for eye size (allometry). Differences between the mouse and cat or rhesus can be explained by differing ocular motor repertoires of animals with and without a fovea or area centralis.

摘要

眼球和眼眶组织(“眼球运动器官”)的力学特性是眼球运动信号处理的基本决定因素。在眼球运动生理学中,小鼠的应用越来越多,但对其运动器官力学特性却知之甚少。一种描述力学特性的方法是确定眼外运动神经元放电与眼球运动之间的关系。我们在光照下记录了执行补偿性眼球运动的小鼠的展神经核神经元,频率为 0.1 至 1.6 Hz。我们分析了放电率,以提取眼球位置和眼球速度的敏感性,从中我们确定了运动器官粘弹性模型的时间常数。大多数展神经神经元在眼球处于中央休息位置时已经活跃,只有 6%的神经元在更外展的位置被募集。尽管在眼球幅度变小时(由于刺激幅度减小或警觉性降低),眼球运动的调制比例增加,导致存在非线性,但放电率与眼球运动之间表现出很大的线性关系。眼球位置和速度敏感性随着刺激频率的变化而变化,这与由级联粘弹性主导的眼球运动器官一致。传递函数极点位于大约 0.1 和 0.9 s。与以前研究过的动物物种相比,与兔子相比,小鼠的运动器官更硬,但比猫和恒河猴更软。小鼠和兔子之间的差异可以通过眼睛大小的比例(同态)来解释。小鼠和猫或恒河猴之间的差异可以通过有无黄斑或中央凹的动物的眼球运动范围来解释。

相似文献

1
Dynamics of abducens nucleus neurons in the awake mouse.
J Neurophysiol. 2012 Nov;108(9):2509-23. doi: 10.1152/jn.00249.2012. Epub 2012 Aug 15.
2
Dynamics of abducens nucleus neurons in the awake rabbit.
J Neurophysiol. 1995 Apr;73(4):1383-95. doi: 10.1152/jn.1995.73.4.1383.
5
Mechanics of mouse ocular motor plant quantified by optogenetic techniques.
J Neurophysiol. 2015 Sep;114(3):1455-67. doi: 10.1152/jn.00328.2015. Epub 2015 Jun 24.
6
Discharge characteristics of medial rectus and abducens motoneurons in the goldfish.
J Neurophysiol. 1991 Dec;66(6):2125-40. doi: 10.1152/jn.1991.66.6.2125.
9
Motor unit recruitment in a distributed model of extraocular muscle.
J Neurophysiol. 1996 Aug;76(2):727-42. doi: 10.1152/jn.1996.76.2.727.
10
Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement.
J Neurophysiol. 1970 May;33(3):382-92. doi: 10.1152/jn.1970.33.3.382.

引用本文的文献

1
Impact of Purkinje Cell Simple Spike Synchrony on Signal Transmission from Flocculus.
Cerebellum. 2022 Dec;21(6):879-904. doi: 10.1007/s12311-021-01332-w. Epub 2021 Oct 19.
2
Functional Organization of Vestibulo-Ocular Responses in Abducens Motoneurons.
J Neurosci. 2017 Apr 12;37(15):4032-4045. doi: 10.1523/JNEUROSCI.2626-16.2017. Epub 2017 Mar 14.
3
Mechanics of mouse ocular motor plant quantified by optogenetic techniques.
J Neurophysiol. 2015 Sep;114(3):1455-67. doi: 10.1152/jn.00328.2015. Epub 2015 Jun 24.
5
Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion.
J Neurophysiol. 2013 Dec;110(12):2704-17. doi: 10.1152/jn.01037.2012. Epub 2013 Oct 2.

本文引用的文献

1
The nonlinearity of passive extraocular muscles.
Ann N Y Acad Sci. 2011 Sep;1233(1):17-25. doi: 10.1111/j.1749-6632.2011.06111.x.
2
Dual encoding of muscle tension and eye position by abducens motoneurons.
J Neurosci. 2011 Feb 9;31(6):2271-9. doi: 10.1523/JNEUROSCI.5416-10.2011.
3
Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model.
Front Cell Neurosci. 2010 Jan 4;3:19. doi: 10.3389/neuro.03.019.2009. eCollection 2010.
4
An altered phenotype in a conditional knockout of Pitx2 in extraocular muscle.
Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4531-41. doi: 10.1167/iovs.08-2950. Epub 2009 Apr 30.
5
The viscoelastic properties of passive eye muscle in primates. I: static forces and step responses.
PLoS One. 2009;4(4):e4850. doi: 10.1371/journal.pone.0004850. Epub 2009 Apr 1.
6
Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation.
J Neurophysiol. 2009 Jun;101(6):2907-23. doi: 10.1152/jn.91045.2008. Epub 2009 Mar 18.
7
Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse.
Brain Res. 2008 Feb 8;1193:57-66. doi: 10.1016/j.brainres.2007.11.053. Epub 2007 Dec 5.
8
Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse.
J Neurophysiol. 2007 Sep;98(3):1549-65. doi: 10.1152/jn.00590.2007. Epub 2007 Jul 11.
9
Eye movements of the murine P/Q calcium channel mutant tottering, and the impact of aging.
J Neurophysiol. 2006 Mar;95(3):1588-607. doi: 10.1152/jn.00318.2005. Epub 2005 Dec 7.
10
Eliminating the Ant1 isoform produces a mouse with CPEO pathology but normal ocular motility.
Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4555-62. doi: 10.1167/iovs.05-0695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验