Suppr超能文献

作为与非小细胞肺癌相关的EGFR 696 - 1022 T790M抑制剂的天然化合物虚拟筛选

Virtual screening of natural compounds as inhibitors of EGFR 696-1022 T790M associated with non-small cell lung cancer.

作者信息

Nand Mahesha, Maiti Priyanka, Pant Ragini, Kumari Madhulata, Chandra Subhash, Pande Veena

机构信息

Department of Biotechnology, Kumaun University, Bhimtal Campus Bhimtal, Uttarakhand, India.

Department of Botany, Kumaun University, S.S.J Campus, Almora, Uttarakhand, India.

出版信息

Bioinformation. 2016 Oct 10;12(6):311-317. doi: 10.6026/97320630012311. eCollection 2016.

Abstract

Non-small cell lung cancer (NSCLC) is the most dominating and lethal type of lung cancer triggering more than 1.3 million deaths per year. The most effective line of treatment against NSCLC is to target epidermal growth factor receptor (EGFR) activating mutation. The present study aims to identify the novel anti-lung cancer compounds form nature against EGFR 696-1022 T790M by using in silico approaches. A library of 419 compounds from several natural resources was subjected to pre-screen through machine learning model using Random Forest classifier resulting 63 screened molecules with active potential. These molecules were further screened by molecular docking against the active site of EGFR 696-1022 T790M protein using AutoDock Vina followed by rescoring using X-Score. As a result 4 compounds were finally screened namely Granulatimide, Danorubicin, Penicinoline and Austocystin D with lowest binding energy which were -6.5 kcal/mol, -6.1 kcal/mol, -6.3 kcal/mol and -7.1 kcal/mol respectively. The drug likeness of the screened compounds was evaluated using FaF-Drug3 server. Finally toxicity of the hit compounds was predicted in cell line using the CLC-Pred server where their cytotoxic ability against various lung cancer cell lines was confirmed. We have shown 4 potential compounds, which could be further exploited as efficient drug candidates against lung cancer.

摘要

非小细胞肺癌(NSCLC)是最主要且致命的肺癌类型,每年导致超过130万人死亡。针对NSCLC最有效的治疗方法是靶向表皮生长因子受体(EGFR)激活突变。本研究旨在通过计算机模拟方法从天然产物中鉴定针对EGFR 696 - 1022 T790M的新型抗肺癌化合物。使用随机森林分类器的机器学习模型对来自几种天然资源的419种化合物库进行预筛选,得到63个具有活性潜力的筛选分子。使用AutoDock Vina将这些分子与EGFR 696 - 1022 T790M蛋白的活性位点进行分子对接,随后使用X-Score重新评分。结果最终筛选出4种化合物,分别是Granulatimide、柔红霉素、Penicinoline和Austocystin D,其结合能最低,分别为-6.5千卡/摩尔、-6.1千卡/摩尔、-6.3千卡/摩尔和-7.1千卡/摩尔。使用FaF-Drug3服务器评估筛选化合物的类药性。最后,使用CLC-Pred服务器在细胞系中预测命中化合物的毒性,证实了它们对各种肺癌细胞系的细胞毒性能力。我们已经展示了4种潜在化合物,它们可进一步开发为有效的抗肺癌候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea19/5320927/8d65458308a6/97320630012311F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验