Lagunin Alexey A, Dubovskaja Varvara I, Rudik Anastasia V, Pogodin Pavel V, Druzhilovskiy Dmitry S, Gloriozova Tatyana A, Filimonov Dmitry A, Sastry Narahari G, Poroikov Vladimir V
Department for Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.
Department for Bioinformatics, Medico-Biologic Faculty, Pirogov Russian National Research Medical University, Moscow, Russia.
PLoS One. 2018 Jan 25;13(1):e0191838. doi: 10.1371/journal.pone.0191838. eCollection 2018.
In silico methods of phenotypic screening are necessary to reduce the time and cost of the experimental in vivo screening of anticancer agents through dozens of millions of natural and synthetic chemical compounds. We used the previously developed PASS (Prediction of Activity Spectra for Substances) algorithm to create and validate the classification SAR models for predicting the cytotoxicity of chemicals against different types of human cell lines using ChEMBL experimental data. A training set from 59,882 structures of compounds was created based on the experimental data (IG50, IC50, and % inhibition values) from ChEMBL. The average accuracy of prediction (AUC) calculated by leave-one-out and a 20-fold cross-validation procedure during the training was 0.930 and 0.927 for 278 cancer cell lines, respectively, and 0.948 and 0.947 for cytotoxicity prediction for 27 normal cell lines, respectively. Using the given SAR models, we developed a freely available web-service for cell-line cytotoxicity profile prediction (CLC-Pred: Cell-Line Cytotoxicity Predictor) based on the following structural formula: http://way2drug.com/Cell-line/.
通过数以千万计的天然和合成化合物对抗癌药物进行体内实验筛选,其时间和成本颇高,因此有必要采用计算机模拟的表型筛选方法。我们使用先前开发的PASS(物质活性谱预测)算法,利用ChEMBL实验数据创建并验证了用于预测化学物质对不同类型人类细胞系细胞毒性的分类SAR模型。基于ChEMBL的实验数据(IG50、IC50和抑制率值)创建了一个包含59,882个化合物结构的训练集。在训练过程中,通过留一法和20倍交叉验证程序计算得出,对于278种癌细胞系,预测的平均准确率(AUC)分别为0.930和0.927,对于27种正常细胞系的细胞毒性预测,平均准确率分别为0.948和0.947。利用给定的SAR模型,我们基于以下结构式开发了一个免费的细胞系细胞毒性谱预测网络服务(CLC-Pred:细胞系细胞毒性预测器):http://way2drug.com/Cell-line/ 。