Suppr超能文献

从苏打湖分离出的三种硫氰酸盐氧化物种的比较基因组分析

Comparative Genome Analysis of Three Thiocyanate Oxidizing Species Isolated from Soda Lakes.

作者信息

Berben Tom, Overmars Lex, Sorokin Dimitry Y, Muyzer Gerard

机构信息

Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands.

Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of SciencesMoscow, Russia; Department of Biotechnology, Delft University of TechnologyDelft, Netherlands.

出版信息

Front Microbiol. 2017 Feb 28;8:254. doi: 10.3389/fmicb.2017.00254. eCollection 2017.

Abstract

Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the "carbonyl sulfide pathway," which has been extensively studied, and (ii) the "cyanate pathway," whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of , a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) ("cyanate pathway"), (ii) ("cyanate pathway") and (iii) ("carbonyl sulfide pathway"). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of ), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of ). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory sulfite reductase, and sulfite dehydrogenase. One strain () lacks genes encoding a carbon concentrating mechanism and none of the investigated genomes were shown to contain known bicarbonate transporters. This study gives insight into the genomic variation of thiocyanate oxidizing bacteria and may lead to improvements in the application of these organisms in the bioremediation of industrial waste streams.

摘要

硫氰酸盐是一种含有碳、氮和硫的C1化合物。它是许多自然和工业过程中的(副)产物。由于硫氰酸盐对包括人类在内的许多生物有毒,因此从工业废水中去除硫氰酸盐是一个重要问题。虽然许多细菌可以将硫氰酸盐用作氮源,但只有少数细菌可以将其用作电子供体。利用硫氰酸盐有两种不同的途径:(i)“羰基硫途径”,该途径已得到广泛研究;(ii)“氰酸盐途径”,其关键酶硫氰酸脱氢酶最近已被纯化和研究。从苏打湖分离出的一组嗜盐碱嗜硫氧化细菌中的三个物种已被描述为硫氰酸盐氧化菌:(i)(“氰酸盐途径”),(ii)(“氰酸盐途径”)和(iii)(“羰基硫途径”)。在本研究中,我们对这些已描述的硫氰酸盐氧化菌进行了比较基因组分析,其基因组大小在250万至380万个碱基对之间。在关注硫氰酸盐降解的同时,我们还分析了硫、碳和氮代谢的差异。我们发现硫氰酸脱氢酶基因存在于10种不同的菌株中,存在于两种不同的基因组背景/基因型中。第一种基因型的定义是在硫氰酸脱氢酶操纵子上游有黄素细胞色素硫化物脱氢酶基因(存在于包括模式菌株在内的两种菌株中),而在第二种基因型中,这些基因位于下游,还有另外两个功能未知的基因(存在于包括模式菌株在内的八种菌株中)。此外,我们发现各种硫氧化途径的基因的存在与否存在差异,例如硫化物:醌氧化还原酶、异化亚硫酸盐还原酶和亚硫酸盐脱氢酶。一个菌株()缺乏编码碳浓缩机制的基因,并且所研究的基因组中没有一个被证明含有已知的碳酸氢盐转运蛋白。这项研究深入了解了硫氰酸盐氧化细菌的基因组变异,并可能有助于改进这些生物体在工业废水生物修复中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3603/5328954/91808e5a6079/fmicb-08-00254-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验