Suppr超能文献

高碱性条件下微生物对硫氰酸盐的利用

Microbial thiocyanate utilization under highly alkaline conditions.

作者信息

Sorokin D Y, Tourova T P, Lysenko A M, Kuenen J G

机构信息

Institute of Microbiology RAS, 117811 Moscow, Russia.

出版信息

Appl Environ Microbiol. 2001 Feb;67(2):528-38. doi: 10.1128/AEM.67.2.528-538.2001.

Abstract

Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO-) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a "cyanate pathway" in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.

摘要

在高碱性苏打湖沉积物和苏打土壤中发现了三种能够在pH值为10时利用硫氰酸盐(CNS-)的嗜碱细菌。第一组包括专性异养菌,它们在以醋酸盐作为碳源和能源、pH值为10的条件下生长时,将硫氰酸盐用作氮源。大多数异养菌株能够将硫化物和硫代硫酸盐氧化为连四硫酸盐。第二组包括专性自养硫氧化嗜碱菌,它们在以硫代硫酸盐作为能源生长时利用硫氰酸盐中的氮。基因分析表明,利用硫氰酸盐作为氮源的异养和自养嗜碱菌均与先前描述的属于变形菌门γ亚纲的硫氧化嗜碱菌有关(异养菌属于嗜盐单胞菌属,自养菌属于硫碱弧菌属)。第三组包括能够将硫氰酸盐作为唯一能源利用的专性自养硫氧化嗜碱细菌。这些细菌可以在pH值为10、含有硫氰酸盐的矿物培养基上富集培养。与硫代硫酸盐相比,利用硫氰酸盐生长通常要慢得多,不过硫氰酸盐上的生物量产量更高。在分离出的四株菌株中,三株弧菌状菌株在基因上与先前描述的属于硫碱弧菌属的硫氧化嗜碱菌密切相关。杆状分离株与其他分离株的不同之处在于,它能够在细胞内积累大量元素硫,并且能够氧化二硫化碳。尽管该分离株与弧菌状菌株的DNA同源性较低且存在显著的表型差异,但根据系统发育分析,它也属于硫碱弧菌属。以硫氰酸盐作为氮源生长的异养和自养嗜碱菌具有相对较高水平的氰酶活性,该酶可将氰酸盐(CNO-)转化为氨和二氧化碳。另一方面,在以硫氰酸盐作为唯一能源和氮源生长的自养菌株中,要么没有氰酶活性,要么氰酶活性水平极低。因此,在分批培养和硫氰酸盐限制的连续培养中,当在pH值为10的条件下利用硫氰酸盐时,发现培养基中积累了大量氰酸盐。这是硫氰酸盐降解细菌纯培养物中存在“氰酸盐途径”的首个直接证据。由于氰酸盐在碱性条件下相对稳定,它可能作为一种氮缓冲剂,使嗜碱细菌免受游离氨的抑制,否则在硫氰酸盐异化降解过程中游离氨会达到有毒水平。

相似文献

1
Microbial thiocyanate utilization under highly alkaline conditions.
Appl Environ Microbiol. 2001 Feb;67(2):528-38. doi: 10.1128/AEM.67.2.528-538.2001.

引用本文的文献

2
Biological treatment of coke plant effluents: from a microbiological perspective.
Biol Futur. 2020 Dec;71(4):359-370. doi: 10.1007/s42977-020-00028-2. Epub 2020 Aug 20.
4
Nature and bioprospecting of haloalkaliphilics: a review.
World J Microbiol Biotechnol. 2020 Apr 23;36(5):66. doi: 10.1007/s11274-020-02841-2.
5
Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5280-5290. doi: 10.1073/pnas.1922133117. Epub 2020 Feb 24.
9
Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors.
Curr Microbiol. 2020 Apr;77(4):578-587. doi: 10.1007/s00284-019-01694-9. Epub 2019 May 20.
10
Biodegradation of thiocyanate by a native groundwater microbial consortium.
PeerJ. 2019 Mar 26;7:e6498. doi: 10.7717/peerj.6498. eCollection 2019.

本文引用的文献

1
Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria.
Antonie Van Leeuwenhoek. 2000 Apr;77(3):251-62. doi: 10.1023/a:1002445704444.
2
Microbial transformation of thiocyanate.
Environ Pollut. 1990;68(1-2):15-28. doi: 10.1016/0269-7491(90)90011-z.
4
Utilization of thiocyanate by Thiobacillus thioparus and T. thiocyanoxidans.
Nature. 1958 Jul 26;182(4630):266-7. doi: 10.1038/182266a0.
5
The utilisation of thiocyanate and nitrate by Thiobacilli.
Antonie Van Leeuwenhoek. 1957;23(3-4):305-16. doi: 10.1007/BF02545882.
6
A colorimetric method for the determination of thiosulfate.
Biochim Biophys Acta. 1957 Feb;23(2):412-6. doi: 10.1016/0006-3002(57)90346-3.
7
Studies on the metabolism of Thiobacillus thiocyanoxidans.
J Gen Microbiol. 1954 Oct;11(2):139-49. doi: 10.1099/00221287-11-2-139.
8
The isolation and characteristics of an organism oxidizing thiocyanate.
J Gen Microbiol. 1954 Apr;10(2):261-6. doi: 10.1099/00221287-10-2-261.
10
[Microbial destruction of cyanide and thiocyanate].
Mikrobiologiia. 2000 Mar-Apr;69(2):209-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验