Suppr超能文献

用于提高预测 PSA 为 4 - 10 ng/mL 的中国男性前列腺活检结果准确性的尿液生物标志物组合

Urinary Biomarker Panel to Improve Accuracy in Predicting Prostate Biopsy Result in Chinese Men with PSA 4-10 ng/mL.

作者信息

Zhou Yongqiang, Li Yun, Li Xiangnan, Jiang Minjun

机构信息

Department of Urology, The People's Hospital of Wujiang City, Suzhou, Jiangsu, China.

Department of Urology, Shanghai Shibei Hospital of Jingan District, Shanghai, China.

出版信息

Biomed Res Int. 2017;2017:2512536. doi: 10.1155/2017/2512536. Epub 2017 Feb 15.

Abstract

This study aims to evaluate the effectiveness and clinical performance of a panel of urinary biomarkers to diagnose prostate cancer (PCa) in Chinese men with PSA levels between 4 and 10 ng/mL. A total of 122 patients with PSA levels between 4 and 10 ng/mL who underwent consecutive prostate biopsy at three hospitals in China were recruited. First-catch urine samples were collected after an attentive prostate massage. Urinary mRNA levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The predictive accuracy of these biomarkers and prediction models was assessed by the area under the curve (AUC) of the receiver-operating characteristic (ROC) curve. The diagnostic accuracy of PCA3, PSGR, and MALAT-1 was superior to that of PSA. PCA3 performed best, with an AUC of 0.734 (95% CI: 0.641, 0.828) followed by MALAT-1 with an AUC of 0.727 (95% CI: 0.625, 0.829) and PSGR with an AUC of 0.666 (95% CI: 0.575, 0.749). The diagnostic panel with age, prostate volume, % fPSA, PCA3 score, PSGR score, and MALAT-1 score yielded an AUC of 0.857 (95% CI: 0.780, 0.933). At a threshold probability of 20%, 47.2% of unnecessary biopsies may be avoided whereas only 6.2% of PCa cases may be missed. This urinary panel may improve the current diagnostic modality in Chinese men with PSA levels between 4 and 10 ng/mL.

摘要

本研究旨在评估一组尿液生物标志物在中国男性前列腺特异性抗原(PSA)水平为4至10 ng/mL时诊断前列腺癌(PCa)的有效性和临床性能。共招募了122名在中国三家医院接受连续前列腺活检、PSA水平在4至10 ng/mL之间的患者。在仔细进行前列腺按摩后收集首次晨尿样本。通过定量实时聚合酶链反应(qRT-PCR)测量尿液mRNA水平。通过受试者操作特征(ROC)曲线的曲线下面积(AUC)评估这些生物标志物和预测模型的预测准确性。PCA3、PSGR和MALAT-1的诊断准确性优于PSA。PCA3表现最佳,AUC为0.734(95%置信区间:0.641,0.828),其次是MALAT-1,AUC为0.727(95%置信区间:0.625,0.829),PSGR的AUC为0.666(95%置信区间:0.575,0.749)。包含年龄、前列腺体积、游离PSA百分比、PCA3评分、PSGR评分和MALAT-1评分的诊断组AUC为0.857(95%置信区间:0.780,0.933)。在阈值概率为20%时,可避免47.2%的不必要活检,而仅遗漏6.2%的PCa病例。该尿液检测组可能会改善目前对PSA水平在4至10 ng/mL之间的中国男性的诊断方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2311/5331314/995f6087073c/BMRI2017-2512536.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验