Suppr超能文献

用于基因调控网络推断的基因敲除实验的优化设计。

Optimal design of gene knockout experiments for gene regulatory network inference.

作者信息

Ud-Dean S M Minhaz, Gunawan Rudiyanto

机构信息

Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland and Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland and.

出版信息

Bioinformatics. 2016 Mar 15;32(6):875-83. doi: 10.1093/bioinformatics/btv672. Epub 2015 Nov 14.

Abstract

MOTIVATION

We addressed the problem of inferring gene regulatory network (GRN) from gene expression data of knockout (KO) experiments. This inference is known to be underdetermined and the GRN is not identifiable from data. Past studies have shown that suboptimal design of experiments (DOE) contributes significantly to the identifiability issue of biological networks, including GRNs. However, optimizing DOE has received much less attention than developing methods for GRN inference.

RESULTS

We developed REDuction of UnCertain Edges (REDUCE) algorithm for finding the optimal gene KO experiment for inferring directed graphs (digraphs) of GRNs. REDUCE employed ensemble inference to define uncertain gene interactions that could not be verified by prior data. The optimal experiment corresponds to the maximum number of uncertain interactions that could be verified by the resulting data. For this purpose, we introduced the concept of edge separatoid which gave a list of nodes (genes) that upon their removal would allow the verification of a particular gene interaction. Finally, we proposed a procedure that iterates over performing KO experiments, ensemble update and optimal DOE. The case studies including the inference of Escherichia coli GRN and DREAM 4 100-gene GRNs, demonstrated the efficacy of the iterative GRN inference. In comparison to systematic KOs, REDUCE could provide much higher information return per gene KO experiment and consequently more accurate GRN estimates.

CONCLUSIONS

REDUCE represents an enabling tool for tackling the underdetermined GRN inference. Along with advances in gene deletion and automation technology, the iterative procedure brings an efficient and fully automated GRN inference closer to reality.

AVAILABILITY AND IMPLEMENTATION

MATLAB and Python scripts of REDUCE are available on www.cabsel.ethz.ch/tools/REDUCE CONTACT: rudi.gunawan@chem.ethz.ch

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

我们研究了从基因敲除(KO)实验的基因表达数据推断基因调控网络(GRN)的问题。已知这种推断是欠定的,并且无法从数据中识别GRN。过去的研究表明,实验设计(DOE)的次优对生物网络(包括GRN)的可识别性问题有显著影响。然而,优化DOE所受到的关注远少于开发GRN推断方法。

结果

我们开发了不确定边约简(REDUCE)算法,用于寻找推断GRN有向图(有向图)的最优基因KO实验。REDUCE采用集成推断来定义无法通过先前数据验证的不确定基因相互作用。最优实验对应于所得数据可验证的不确定相互作用的最大数量。为此,我们引入了边分隔体的概念,它给出了一系列节点(基因),去除这些节点将允许验证特定的基因相互作用。最后,我们提出了一个在进行KO实验、集成更新和最优DOE之间迭代的过程。包括大肠杆菌GRN和DREAM 4 100基因GRN推断在内的案例研究证明了迭代GRN推断的有效性。与系统KO相比,REDUCE每个基因KO实验可提供更高的信息回报,从而得到更准确的GRN估计。

结论

REDUCE是解决欠定GRN推断问题的一种有效工具。随着基因删除和自动化技术的进步,迭代过程使高效且完全自动化的GRN推断更接近现实。

可用性和实现方式

REDUCE的MATLAB和Python脚本可在www.cabsel.ethz.ch/tools/REDUCE获取

联系方式

rudi.gunawan@chem.ethz.ch

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c07c/4803391/32fe91dea1fc/btv672f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验