Plaza-Leiva Victoria, Gomez-Ruiz Jose Antonio, Mandow Anthony, García-Cerezo Alfonso
Grupo de Investigación de Ingeniería de Sistemas y Automática, Andalucía Tech, Universidad de Málaga, 29071 Málaga, Spain.
Sensors (Basel). 2017 Mar 15;17(3):594. doi: 10.3390/s17030594.
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.
提高从3D激光雷达数据中进行空间形状特征分类的有效性非常重要,因为它在很大程度上被用作迈向自动驾驶车辆和地面机器人更高层次场景理解挑战的基础步骤。从这个意义上说,对于密集扫描中的点计算邻域对于训练和分类来说都是一个成本高昂的过程。本文提出了一个新的通用框架,用于实现和比较不同的监督学习分类器,该框架采用简单的基于体素的邻域计算方法,即通过考虑由体素本身定义的支持区域内的特征,将规则网格中每个不重叠体素中的点分配到同一类别。该贡献提供了离线训练和在线分类程序,以及基于主成分分析的五种用于散射、管状和平面对象的替代特征向量定义。此外,通过实现作者先前提出的神经网络(NN)方法以及在场景处理方法中找到的其他三种监督学习分类器:支持向量机(SVM)、高斯过程(GP)和高斯混合模型(GMM),来评估该方法的可行性。使用来自自然和城市环境的真实点云以及两种不同的3D测距仪(倾斜的Hokuyo UTM - 30LX和Riegl)进行了比较性能分析。分类性能指标和处理时间测量结果证实了NN分类器的优势以及基于体素邻域的可行性。