Suppr超能文献

非参数析因设计的基于秩次的置换方法。

Rank-based permutation approaches for non-parametric factorial designs.

作者信息

Umlauft Maria, Konietschke Frank, Pauly Markus

机构信息

Institute of Statistics, Ulm University, Germany.

Department of Mathematical Sciences, The University of Texas at Dallas, Texas, USA.

出版信息

Br J Math Stat Psychol. 2017 Nov;70(3):368-390. doi: 10.1111/bmsp.12089. Epub 2017 Mar 15.

Abstract

Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability.

摘要

研究了一般非参数析因设计中根据分布函数制定的零假设的推断方法。这些方法可以统一应用于连续、有序甚至有序分类数据,并且仅基于秩。在这种设置下, Wald 型统计量和 ANOVA 型统计量是当前的技术水平。第一种方法在渐近意义上是精确的,但对于中小样本量来说是一种相当宽松的统计检验程序,而后者只是一种近似方法,在零假设下不具有正确的渐近α水平。为了弥合这些差距,提出了一种新颖的置换方法,它可以被视为将 Kruskal-Wallis 检验灵活推广到具有独立观测值的各种析因设计。证明了置换原理在渐近意义上是正确的,并且当数据可交换时保持其有限精确性。大量模拟研究的结果支持了这些理论发现。一个真实数据集例证了其适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验