14903Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, Berlin, Germany.
Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, Berlin, Germany.
Stat Methods Med Res. 2022 Jan;31(1):105-118. doi: 10.1177/09622802211046389. Epub 2021 Nov 29.
We develop purely nonparametric methods for the analysis of repeated measures designs with missing values. Hypotheses are formulated in terms of purely nonparametric treatment effects. In particular, data can have different shapes even under the null hypothesis and therefore, a solution to the nonparametric Behrens-Fisher problem in repeated measures designs will be presented. Moreover, global testing and multiple contrast test procedures as well as simultaneous confidence intervals for the treatment effects of interest will be developed. All methods can be applied for the analysis of metric, discrete, ordinal, and even binary data in a unified way. Extensive simulation studies indicate a satisfactory control of the nominal type-I error rate, even for small sample sizes and a high amount of missing data (up to 30%). We apply the newly developed methodology to a real data set, demonstrating its application and interpretation.
我们开发了纯粹的非参数方法来分析具有缺失值的重复测量设计。假设是根据纯粹的非参数处理效应来制定的。特别是,即使在零假设下,数据也可以具有不同的形状,因此,将提出重复测量设计中非参数 Behrens-Fisher 问题的解决方案。此外,还将开发全局检验和多重对比检验程序以及感兴趣的处理效果的同时置信区间。所有方法都可以以统一的方式应用于度量、离散、有序甚至二进制数据的分析。广泛的模拟研究表明,即使在小样本量和大量缺失数据(高达 30%)的情况下,名义型 I 错误率也能得到令人满意的控制。我们将新开发的方法应用于实际数据集,展示了其应用和解释。