Avdoshina Valeria, Caragher Seamus P, Wenzel Erin D, Taraballi Francesca, Mocchetti Italo, Harry Gaylia Jean
Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Washington, Washington, District of Columbia, USA.
Department of Pharmacology and Physiology, Georgetown University Washington, Washington, District of Columbia, USA.
J Neurochem. 2017 May;141(4):606-613. doi: 10.1111/jnc.14015. Epub 2017 Apr 6.
The human immunodeficiency virus (HIV) envelope protein gp120 promotes axonal damage and neurite pruning, similar to that observed in HIV-positive subjects with neurocognitive disorders. Thus, gp120 has been used to examine molecular and cellular pathways underlying HIV-mediated neuronal dysfunction. Gp120 binds to tubulin beta III, a component of neuronal microtubules. Microtubule function, which modulates the homeostasis of neurons, is regulated by polymerization and post-translational modifications. Based on these considerations, we tested the hypothesis that gp120 induces dynamic instability of neuronal microtubules. We first observed that gp120 prevents the normal polymerization of tubulin in vitro. We then tested whether gp120 alters the post-translational modifications in tubulin by examining the ability of gp120 to change the levels of acetylated tubulin in primary rat neuronal cultures. Gp120 elicited a time-dependent decrease in tubulin acetylation that was reversed by Helix-A peptide, a compound that competitively displaces the binding of gp120 to neuronal microtubules. To determine whether post-translational modifications in tubulin also occur in vivo, we measured acetylated tubulin in the cerebral cortex of HIV transgenic rats (HIV-tg). We observed a decrease in tubulin acetylation in 5- and 9-month-old HIV-tg rats when compared to age-matched wild type. Neither changes in microglia morphology nor alterations in mRNA levels for interleukin-1β and tumor necrosis factor α were detected in 5-month-old animals. Our findings propose neuronal microtubule instability as a novel mechanism of HIV neurotoxicity, without evidence of enhanced inflammation.
人类免疫缺陷病毒(HIV)包膜蛋白gp120会促进轴突损伤和神经突修剪,这与在患有神经认知障碍的HIV阳性受试者中观察到的情况相似。因此,gp120已被用于研究HIV介导的神经元功能障碍背后的分子和细胞途径。Gp120与神经元微管的组成成分微管蛋白βIII结合。微管功能调节神经元的稳态,它受聚合作用和翻译后修饰的调控。基于这些考虑,我们测试了gp120诱导神经元微管动态不稳定性的假设。我们首先观察到gp120在体外可阻止微管蛋白的正常聚合。然后,我们通过检测gp120改变原代大鼠神经元培养物中乙酰化微管蛋白水平的能力,来测试gp120是否会改变微管蛋白的翻译后修饰。Gp120引起微管蛋白乙酰化呈时间依赖性降低,而Helix-A肽可逆转这种降低,Helix-A肽是一种能竞争性取代gp120与神经元微管结合的化合物。为了确定微管蛋白的翻译后修饰是否也在体内发生,我们测量了HIV转基因大鼠(HIV-tg)大脑皮层中的乙酰化微管蛋白。我们观察到,与年龄匹配的野生型相比,5个月和9个月大的HIV-tg大鼠的微管蛋白乙酰化水平降低。在5个月大的动物中,未检测到小胶质细胞形态的变化以及白细胞介素-1β和肿瘤坏死因子α的mRNA水平的改变。我们的研究结果提出,神经元微管不稳定性是HIV神经毒性的一种新机制,且没有炎症增强的证据。