Suppr超能文献

基于线段SURF特征的图像拼接

Image mosaicking using SURF features of line segments.

作者信息

Yang Zhanlong, Shen Dinggang, Yap Pew-Thian

机构信息

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina, Chapel Hill, NC, United States of America.

出版信息

PLoS One. 2017 Mar 15;12(3):e0173627. doi: 10.1371/journal.pone.0173627. eCollection 2017.

Abstract

In this paper, we present a novel image mosaicking method that is based on Speeded-Up Robust Features (SURF) of line segments, aiming to achieve robustness to incident scaling, rotation, change in illumination, and significant affine distortion between images in a panoramic series. Our method involves 1) using a SURF detection operator to locate feature points; 2) rough matching using SURF features of directed line segments constructed via the feature points; and 3) eliminating incorrectly matched pairs using RANSAC (RANdom SAmple Consensus). Experimental results confirm that our method results in high-quality panoramic mosaics that are superior to state-of-the-art methods.

摘要

在本文中,我们提出了一种基于线段加速稳健特征(SURF)的新型图像拼接方法,旨在实现对全景序列中图像间的入射缩放、旋转、光照变化以及显著仿射失真的鲁棒性。我们的方法包括:1)使用SURF检测算子定位特征点;2)利用通过特征点构建的有向线段的SURF特征进行粗匹配;3)使用随机抽样一致性算法(RANSAC)消除错误匹配的对。实验结果证实,我们的方法能够生成优于现有方法的高质量全景拼接图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6155/5351852/9819f7bc9a95/pone.0173627.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验