Suppr超能文献

基于词汇袋模型的图像视觉表示的有效基于内容的图像检索技术。

An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model.

机构信息

Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan.

Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan.

出版信息

PLoS One. 2018 Apr 25;13(4):e0194526. doi: 10.1371/journal.pone.0194526. eCollection 2018.

Abstract

For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.

摘要

在过去的三十年中,基于内容的图像检索(CBIR)一直是一个活跃的研究领域,代表了一种从图像库中检索相似图像的可行解决方案。在本文中,我们提出了一种基于加速稳健特征(SURF)和快速视网膜关键点(FREAK)特征描述符的视觉词融合的新型 CBIR 技术。SURF 是一种稀疏描述符,而 FREAK 是一种密集描述符。此外,SURF 是一种尺度和旋转不变的描述符,在重复性、独特性和鲁棒性方面表现更好。它对噪声、检测错误、几何和光度变形具有鲁棒性。与 FREAK 描述符相比,它在图像中的低光照条件下表现更好。相比之下,FREAK 是一种受视网膜启发的快速描述符,在分类问题上的性能优于 SURF 描述符。实验结果表明,基于 SURF-FREAK 描述符的视觉词融合的提出的技术结合了两个描述符的特征,并解决了上述问题。对三个图像集(Corel-1000、Corel-1500 和 Caltech-256)进行的定性和定量分析表明,与两种描述符的特征融合和最先进的图像检索技术相比,基于视觉词融合的提出的技术显著提高了 CBIR 的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0567/5919049/12a4c2ad3a14/pone.0194526.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验