Flach S, Zolotaryuk Y, Kladko K
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):6105-15. doi: 10.1103/physreve.59.6105.
We develop a general mapping from given kink or pulse shaped traveling-wave solutions including their velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this mapping-by definition an inverse method-to acoustic solitons in chains with nonlinear intersite interactions, nonlinear Klein-Gordon chains, reaction-diffusion equations, and discrete nonlinear Schrödinger systems. Potential functions can be found in a unique way provided the pulse shape is reflection symmetric and pulse and kink shapes are at least C2 functions. For kinks we discuss the relation of our results to the problem of a Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for moving solutions.
我们建立了一个从给定的扭结或脉冲形状的行波解(包括其速度)到支持这些解的一维晶格上运动方程的通用映射。我们将这种映射——根据定义是一种逆方法——应用于具有非线性格点间相互作用的链中的声学孤子、非线性克莱因 - 戈登链、反应 - 扩散方程以及离散非线性薛定谔系统。只要脉冲形状是反射对称的且脉冲和扭结形状至少是(C^2)函数,就可以以独特的方式找到势函数。对于扭结,我们讨论了我们的结果与皮尔斯 - 纳巴罗势问题和连续对称性的关系。然后我们将我们的方法推广到反应 - 扩散系统的高维晶格。我们发现增加分量的数量也很容易产生移动解。