Zhao Wei, Wang Guiren
Institute of Photonics and Photon-technology, International Scientific and Technological Cooperation Base of Photoelectric Technology and Functional Materials and Application, Northwest University, 229 North Taibai Road, Xi'an 710069, People's Republic of China.
Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA.
Phys Rev E. 2017 Feb;95(2-1):023111. doi: 10.1103/PhysRevE.95.023111. Epub 2017 Feb 22.
Electrokinetic (EK) turbulence or electrohydrodynamic (EHD) turbulence has been recently achieved in different fluids under both ac [G. Wang et al., Lab Chip 14, 1452 (2014)10.1039/C3LC51403J; Phys. Rev. E 93, 013106 (2016)10.1103/PhysRevE.93.013106] and dc electric fields [A. Varshney et al., Soft Matter 12, 1759 (2016)10.1039/C5SM02316E]. Here, through dimensional analysis, scaling laws of both velocity and electric conductivity structure functions in the forced cascade region of ac EK turbulence can be predicated (similar to Bolgiano-Obukhov scaling law in turbulent Rayleigh-Bénard convection), in either macroscale or microscale flows. In the forced cascade region, EK force, which relies on the direct cascade of conductivity structures, injects energy directly into a wide spectral region to sustain the flow disturbance. The scaling exponents of the second-order velocity and conductivity structures are 2/5 and 4/5, respectively. In addition to the scaling regions, two characteristic small length scales are derived for both weak and strong electric body forces, respectively. This theoretical investigation can significantly enhance our understanding of EK or EHD turbulence while forced by an ac electric field. It can further broaden our understanding of the forced cascade region of forced turbulence and make the manipulation of the turbulent cascade process more flexible and controllable.
电动(EK)湍流或电流体动力学(EHD)湍流最近已在不同流体中,于交流电场[G. Wang等人,Lab Chip 14, 1452 (2014)10.1039/C3LC51403J;Phys. Rev. E 93, 013106 (2016)10.1103/PhysRevE.93.013106]和直流电场[A. Varshney等人,Soft Matter 12, 1759 (2016)10.1039/C5SM02316E]下实现。在此,通过量纲分析,可以预测交流EK湍流的强迫级联区域中速度和电导率结构函数的标度律(类似于湍流瑞利 - 贝纳德对流中的博尔贾诺 - 奥布霍夫标度律),无论是在宏观尺度还是微观尺度流动中。在强迫级联区域,依赖于电导率结构直接级联的EK力将能量直接注入宽频谱区域以维持流动扰动。二阶速度和电导率结构的标度指数分别为2/5和4/5。除了标度区域外,还分别针对弱和强电体力导出了两个特征小长度尺度。这项理论研究可以显著增强我们对交流电场驱动下的EK或EHD湍流的理解。它可以进一步拓宽我们对强迫湍流的强迫级联区域的理解,并使湍流级联过程的操纵更加灵活和可控。