Das Moupriya, Costa Anthony B, Green Jason R
Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
Numerical Solutions, Inc., P.O. Box 396, Corvallis, Oregon 97330, USA.
Phys Rev E. 2017 Feb;95(2-1):022102. doi: 10.1103/PhysRevE.95.022102. Epub 2017 Feb 3.
According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000 particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of system-size) and additive. Both temperature and density control the "dynamical chemical potential," the rate of linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of temperatures and densities across the liquid and liquid-vapor coexistence regimes.
根据范德瓦尔斯理论,吸引力和排斥力在简单流体的结构中起着不同的作用。在此,我们研究它们在动力学中的作用;具体而言,是利用柯尔莫哥洛夫-西奈(KS)熵率和李雅普诺夫指数谱来研究确定性混沌的程度。通过对三维伦纳德-琼斯流体和韦克斯-钱德勒-安德森流体进行计算机模拟,我们发现排斥力决定了这些动力学性质,而吸引力在给定的热力学状态下会降低KS熵。无论粒子间作用力如何,对于包含200到2000个粒子的系统,最大李雅普诺夫指数是强度量。我们的有限尺寸标度分析还表明,KS熵既是广延量(系统尺寸的线性函数)又是可加的。温度和密度都控制着“动力学化学势”,即KS熵随系统尺寸的线性增长速率。在固定系统尺寸下,KS熵和最大指数都随密度呈现出一个最大值。我们将这些最大值归因于两种效应之间的竞争:随着粒子被迫更紧密地靠近,排斥势的急剧曲率会产生增强作用,而自由体积和粒子迁移率的减小会产生抑制作用。然而,KS熵的广延性和可加性以及最大李雅普诺夫指数的强度性在跨越液体和液-气共存区域的一系列温度和密度范围内都成立。