Suppr超能文献

大规模基因网络分析揭示细胞外基质途径和同源盒基因在急性髓系白血病中的意义:Pigengene软件包介绍及其应用

Large-scale gene network analysis reveals the significance of extracellular matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene package and its applications.

作者信息

Foroushani Amir, Agrahari Rupesh, Docking Roderick, Chang Linda, Duns Gerben, Hudoba Monika, Karsan Aly, Zare Habil

机构信息

Department of Computer Science, Texas State University, 601 University Drive, San Marcos, USA.

Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, Canada.

出版信息

BMC Med Genomics. 2017 Mar 16;10(1):16. doi: 10.1186/s12920-017-0253-6.

Abstract

BACKGROUND

The distinct types of hematological malignancies have different biological mechanisms and prognoses. For instance, myelodysplastic syndrome (MDS) is generally indolent and low risk; however, it may transform into acute myeloid leukemia (AML), which is much more aggressive.

METHODS

We develop a novel network analysis approach that uses expression of eigengenes to delineate the biological differences between these two diseases.

RESULTS

We find that specific genes in the extracellular matrix pathway are underexpressed in AML. We validate this finding in three ways: (a) We train our model on a microarray dataset of 364 cases and test it on an RNA Seq dataset of 74 cases. Our model showed 95% sensitivity and 86% specificity in the training dataset and showed 98% sensitivity and 91% specificity in the test dataset. This confirms that the identified biological signatures are independent from the expression profiling technology and independent from the training dataset. (b) Immunocytochemistry confirms that MMP9, an exemplar protein in the extracellular matrix, is underexpressed in AML. (c) MMP9 is hypermethylated in the majority of AML cases (n=194, Welch's t-test p-value <10), which complies with its low expression in AML. Our novel network analysis approach is generalizable and useful in studying other complex diseases (e.g., breast cancer prognosis). We implement our methodology in the Pigengene software package, which is publicly available through Bioconductor.

CONCLUSIONS

Eigengenes define informative biological signatures that are robust with respect to expression profiling technology. These signatures provide valuable information about the underlying biology of diseases, and they are useful in predicting diagnosis and prognosis.

摘要

背景

不同类型的血液系统恶性肿瘤具有不同的生物学机制和预后。例如,骨髓增生异常综合征(MDS)通常进展缓慢且风险较低;然而,它可能会转化为急性髓系白血病(AML),后者的侵袭性要强得多。

方法

我们开发了一种新的网络分析方法,该方法利用特征基因的表达来描述这两种疾病之间的生物学差异。

结果

我们发现细胞外基质途径中的特定基因在AML中表达不足。我们通过三种方式验证了这一发现:(a)我们在一个包含364例病例的微阵列数据集上训练我们的模型,并在一个包含74例病例的RNA测序数据集上进行测试。我们的模型在训练数据集中显示出95%的敏感性和86%的特异性,在测试数据集中显示出98%的敏感性和91%的特异性。这证实了所识别的生物学特征独立于表达谱技术且独立于训练数据集。(b)免疫细胞化学证实,细胞外基质中的一个典型蛋白MMP9在AML中表达不足。(c)在大多数AML病例(n = 194,韦尔奇t检验p值<10)中,MMP9发生了高甲基化,这与其在AML中的低表达相符。我们的新型网络分析方法具有可推广性,并且在研究其他复杂疾病(如乳腺癌预后)中很有用。我们在Pigengene软件包中实现了我们的方法,该软件包可通过Bioconductor公开获取。

结论

特征基因定义了关于表达谱技术具有稳健性的信息丰富的生物学特征。这些特征提供了有关疾病潜在生物学的有价值信息,并且在预测诊断和预后方面很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f24/5353782/cd60959cad6a/12920_2017_253_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验