Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
Microb Cell Fact. 2017 Mar 15;16(1):44. doi: 10.1186/s12934-017-0658-0.
Oxidized glutathione (GSSG) is the preferred form for industrial mass production of glutathione due to its high stability compared with reduced glutathione (GSH). In our previous study, over-expression of the mitochondrial thiol oxidase ERV1 gene was the most effective for high GSSG production in Saccharomyces cerevisiae cells among three types of different thiol oxidase genes.
We improved Erv1 enzyme activity for oxidation of GSH and revealed that S32 and N34 residues are critical for the oxidation. Five engineered Erv1 variant proteins containing S32 and/or N34 replacements exhibited 1.7- to 2.4-fold higher in vitro GSH oxidation activity than that of parental Erv1, whereas the oxidation activities of these variants for γ-glutamylcysteine were comparable. According to three-dimensional structures of Erv1 and protein stability assays, S32 and N34 residues interact with nearby residues through hydrogen bonding and greatly contribute to protein stability. These results suggest that increased flexibility by amino acid replacements around the active center decrease inhibitory effects on GSH oxidation. Over-expressions of mutant genes coding these Erv1 variants also increased GSSG and consequently total glutathione production in S. cerevisiae cells. Over-expression of the ERV1 gene was the most effective for GSSG production in S. cerevisiae cells among the parent and other mutant genes, and it increased GSSG production about 1.5-fold compared to that of the parental ERV1 gene.
This is the first study demonstrating the pivotal effects of S32 and N34 residues to high GSH oxidation activity of Erv1. Furthermore, in vivo validity of Erv1 variants containing these S32 and N34 replacements were also demonstrated. This study indicates potentials of Erv1 for high GSSG production.
与还原型谷胱甘肽(GSH)相比,氧化型谷胱甘肽(GSSG)稳定性更高,因此更适合工业大规模生产谷胱甘肽。在我们之前的研究中,三种不同硫氧还蛋白氧化酶基因中,线粒体硫氧还蛋白氧化酶 ERV1 基因的过表达对于提高酿酒酵母细胞中的 GSSG 产量最为有效。
我们提高了 Erv1 酶对 GSH 的氧化活性,并揭示了 S32 和 N34 残基对氧化至关重要。包含 S32 和/或 N34 替换的五种工程化 Erv1 变体蛋白的体外 GSH 氧化活性比亲本 Erv1 高 1.7-2.4 倍,而这些变体对 γ-谷氨酰半胱氨酸的氧化活性相当。根据 Erv1 的三维结构和蛋白质稳定性测定,S32 和 N34 残基通过氢键与附近的残基相互作用,对蛋白质稳定性有很大贡献。这些结果表明,活性中心周围氨基酸替换的增加增加了灵活性,从而降低了对 GSH 氧化的抑制作用。编码这些 Erv1 变体的突变基因的过表达也增加了酿酒酵母细胞中的 GSSG 进而总谷胱甘肽产量。在酿酒酵母细胞中,与亲本和其他突变基因相比,ERV1 基因的过表达对于 GSSG 产量最为有效,与亲本 ERV1 基因相比,GSSG 产量增加了约 1.5 倍。
这是第一项研究,证明了 S32 和 N34 残基对 Erv1 高 GSH 氧化活性的关键作用。此外,还证明了包含这些 S32 和 N34 替换的 Erv1 变体在体内的有效性。本研究表明 Erv1 具有生产高 GSSG 的潜力。