线粒体中二硫键的形成是由 Erv1 亚基间的电子转移驱动的,并由谷胱甘肽进行校正。
Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione.
机构信息
Institut für Zellbiologie, Universität Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663 Kaiserslautern, Germany.
出版信息
Mol Cell. 2010 Feb 26;37(4):516-28. doi: 10.1016/j.molcel.2010.01.017.
The disulfide relay system in the intermembrane space of mitochondria is of crucial importance for mitochondrial biogenesis. Major players in this pathway are the oxidoreductase Mia40 that oxidizes substrates and the sulfhydryl oxidase Erv1 that reoxidizes Mia40. To analyze in detail the mechanism of this oxidative pathway and the interplay of its components, we reconstituted the complete process in vitro using purified cytochrome c, Erv1, Mia40, and Cox19. Here, we demonstrate that Erv1 dimerizes noncovalently and that the subunits of this homodimer cooperate in intersubunit electron exchange. Moreover, we show that Mia40 promotes complete oxidation of the substrate Cox19. The efficient formation of disulfide bonds is hampered by the formation of long-lived, partially oxidized intermediates. The generation of these side products is efficiently counteracted by reduced glutathione. Thus, our findings suggest a role for a glutathione-dependent proofreading during oxidative protein folding by the mitochondrial disulfide relay.
线粒体膜间空间中的二硫键中继系统对于线粒体的生物发生至关重要。该途径中的主要参与者是氧化还原酶 Mia40,它氧化底物,而巯基氧化酶 Erv1 则重新氧化 Mia40。为了详细分析这种氧化途径的机制及其成分的相互作用,我们使用纯化的细胞色素 c、Erv1、Mia40 和 Cox19 在体外重新构建了完整的过程。在这里,我们证明 Erv1 非共价二聚化,并且这个同源二聚体的亚基在亚基间电子交换中合作。此外,我们还表明 Mia40 促进 Cox19 底物的完全氧化。二硫键的有效形成受到长寿命、部分氧化中间产物的形成的阻碍。这些副产物的产生可以通过还原型谷胱甘肽有效地抵消。因此,我们的发现表明,在由线粒体二硫键中继介导的氧化蛋白折叠过程中,谷胱甘肽依赖性校对起作用。