Suppr超能文献

哺乳动物运动过程中肢体间协调的神经控制。

The neural control of interlimb coordination during mammalian locomotion.

作者信息

Frigon Alain

机构信息

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada

出版信息

J Neurophysiol. 2017 Jun 1;117(6):2224-2241. doi: 10.1152/jn.00978.2016. Epub 2017 Mar 15.

Abstract

Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.

摘要

在哺乳动物运动过程中,脊髓内的神经网络直接控制手臂/前肢和腿部/后肢的节律性运动。为了实现有效的运动,这些神经网络必须灵活协调,以允许各种步态模式以及手臂/前肢的独立使用。这种协调可以通过脊髓固有的机制、来自肢体的体感反馈以及各种脊髓上通路来完成。不完全性脊髓损伤会破坏一些参与肢体间协调的通路和结构,这在动物模型和人类中常常导致手臂/前肢与腿部/后肢之间的协调受到破坏。然而,由于补偿机制和策略、冗余的控制系统以及剩余回路中的可塑性,动物模型中的实验性脊髓损伤在揭示肢体协调机制方面存在局限性。本综述的目的是对研究哺乳动物运动过程中手臂/前肢与腿部/后肢协调所涉及神经机制的实验研究进行全面概述和批判性讨论。

相似文献

1
The neural control of interlimb coordination during mammalian locomotion.
J Neurophysiol. 2017 Jun 1;117(6):2224-2241. doi: 10.1152/jn.00978.2016. Epub 2017 Mar 15.
2
Control of Forelimb and Hindlimb Movements and Their Coordination during Quadrupedal Locomotion across Speeds in Adult Spinal Cats.
J Neurotrauma. 2022 Aug;39(15-16):1113-1131. doi: 10.1089/neu.2022.0042. Epub 2022 May 6.
3
Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury.
J Neurotrauma. 2017 May 1;34(9):1751-1765. doi: 10.1089/neu.2016.4421. Epub 2016 Jun 27.
9
[Studies on interlimb coordination of the cat during locomotion].
Hokkaido Igaku Zasshi. 1985 Sep;60(5):699-712.
10
Kinematic and EMG determinants in quadrupedal locomotion of a non-human primate (Rhesus).
J Neurophysiol. 2005 Jun;93(6):3127-45. doi: 10.1152/jn.01073.2004. Epub 2005 Jan 12.

引用本文的文献

2
Pushing the Limits of Interlimb Connectivity: Neuromodulation and Beyond.
Biomedicines. 2025 May 19;13(5):1228. doi: 10.3390/biomedicines13051228.
3
Hierarchical competing inhibition circuits govern motor stability in C. elegans.
Nat Commun. 2025 May 12;16(1):4405. doi: 10.1038/s41467-025-59668-4.
4
Abnormal arm swing movements in Parkinson's disease: onset, progression and response to L-Dopa.
J Neuroeng Rehabil. 2025 Mar 4;22(1):47. doi: 10.1186/s12984-025-01589-w.
7
Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat.
J Physiol. 2025 Jan;603(2):447-487. doi: 10.1113/JP287448. Epub 2024 Dec 20.
8
Interlimb and Intralimb Synergy Modeling for Lower Limb Assistive Devices: Modeling Methods and Feature Selection.
Cyborg Bionic Syst. 2024 Jul 3;5:0122. doi: 10.34133/cbsystems.0122. eCollection 2024.

本文引用的文献

1
Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.
Neuron. 2016 Dec 7;92(5):1063-1078. doi: 10.1016/j.neuron.2016.10.032. Epub 2016 Nov 17.
2
Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
J Physiol. 2016 Dec 1;594(23):6947-6967. doi: 10.1113/JP272787. Epub 2016 Nov 8.
4
Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation.
Exp Brain Res. 2016 Nov;234(11):3059-3081. doi: 10.1007/s00221-016-4715-4. Epub 2016 Jul 15.
5
Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
J Physiol. 2016 Nov 1;594(21):6117-6131. doi: 10.1113/JP272437. Epub 2016 Jul 21.
6
Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury.
J Neurotrauma. 2017 May 1;34(9):1751-1765. doi: 10.1089/neu.2016.4421. Epub 2016 Jun 27.
7
Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.
Front Neurosci. 2016 Feb 23;10:42. doi: 10.3389/fnins.2016.00042. eCollection 2016.
8
Decoding the organization of spinal circuits that control locomotion.
Nat Rev Neurosci. 2016 Apr;17(4):224-38. doi: 10.1038/nrn.2016.9. Epub 2016 Mar 3.
9
Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems.
J Neural Transm (Vienna). 2016 Jul;123(7):695-729. doi: 10.1007/s00702-015-1475-4. Epub 2015 Oct 26.
10
Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.
J Comp Neurol. 2016 Apr 15;524(6):1270-91. doi: 10.1002/cne.23904. Epub 2015 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验