Suppr超能文献

MazF-mt6毒素的结构与功能为深入了解MazF核酸内切酶的保守特征提供了线索。

The structure and function of MazF-mt6 toxin provide insights into conserved features of MazF endonucleases.

作者信息

Hoffer Eric D, Miles Stacey J, Dunham Christine M

机构信息

From the Biochemistry, Cell and Developmental Biology Program, Graduate Division of Biological and Biomedical Sciences and.

the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.

出版信息

J Biol Chem. 2017 May 12;292(19):7718-7726. doi: 10.1074/jbc.M117.779306. Epub 2017 Mar 15.

Abstract

Toxin-antitoxin systems are ubiquitous in prokaryotic and archaeal genomes and regulate growth in response to stress. contains at least 36 putative toxin-antitoxin gene pairs, and some pathogens such as have over 90 toxin-antitoxin operons. MazF cleaves free mRNA after encountering stress, and nine MazF family members cleave mRNA, tRNA, or rRNA. Moreover, MazF-mt6 cleaves 23S rRNA Helix 70 to inhibit protein synthesis. The overall tertiary folds of these MazFs are predicted to be similar, and therefore, it is unclear how they recognize structurally distinct RNAs. Here we report the 2.7-Å X-ray crystal structure of MazF-mt6. MazF-mt6 adopts a PemK-like fold but lacks an elongated β1-β2 linker, a region that typically acts as a gate to direct RNA or antitoxin binding. In the absence of an elongated β1-β2 linker, MazF-mt6 is unable to transition between open and closed states, suggesting that the regulation of RNA or antitoxin selection may be distinct from other canonical MazFs. Additionally, a shortened β1-β2 linker allows for the formation of a deep, solvent-accessible, active-site pocket, which may allow recognition of specific, structured RNAs like Helix 70. Structure-based mutagenesis and bacterial growth assays demonstrate that MazF-mt6 residues Asp-10, Arg-13, and Thr-36 are critical for RNase activity and likely catalyze the proton-relay mechanism for RNA cleavage. These results provide further critical insights into how MazF secondary structural elements adapt to recognize diverse RNA substrates.

摘要

毒素-抗毒素系统在原核生物和古细菌基因组中普遍存在,并在应激反应中调节生长。[具体物种名称]至少包含36个假定的毒素-抗毒素基因对,一些病原体如[具体物种名称]有超过90个毒素-抗毒素操纵子。MazF在遇到应激后切割游离mRNA,并且九个MazF家族成员切割mRNA、tRNA或rRNA。此外,MazF-mt6切割23S rRNA螺旋70以抑制蛋白质合成。预计这些MazF的整体三级折叠结构相似,因此,尚不清楚它们如何识别结构不同的RNA。在这里,我们报告了MazF-mt6的2.7埃X射线晶体结构。MazF-mt6采用PemK样折叠,但缺少延长的β1-β2连接子,该区域通常作为引导RNA或抗毒素结合的门控。在没有延长的β1-β2连接子的情况下,MazF-mt6无法在开放和关闭状态之间转换,这表明RNA或抗毒素选择的调节可能与其他典型的MazF不同。此外,缩短的β1-β2连接子允许形成一个深的、可溶剂进入的活性位点口袋,这可能允许识别特定的、结构化的RNA,如螺旋70。基于结构的诱变和细菌生长试验表明,MazF-mt6的Asp-10、Arg-13和Thr-36残基对RNase活性至关重要,并且可能催化RNA切割的质子传递机制。这些结果为MazF二级结构元件如何适应识别不同的RNA底物提供了进一步的关键见解。

相似文献

1
The structure and function of MazF-mt6 toxin provide insights into conserved features of MazF endonucleases.
J Biol Chem. 2017 May 12;292(19):7718-7726. doi: 10.1074/jbc.M117.779306. Epub 2017 Mar 15.
2
Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8501-6. doi: 10.1073/pnas.1222031110. Epub 2013 May 6.
4
Characterization of mRNA interferases from Mycobacterium tuberculosis.
J Biol Chem. 2006 Jul 7;281(27):18638-43. doi: 10.1074/jbc.M512693200. Epub 2006 Apr 12.
6
Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin.
FEBS Lett. 2004 Jun 4;567(2-3):316-20. doi: 10.1016/j.febslet.2004.05.005.
8
Global Analysis of the Specificities and Targets of Endoribonucleases from Escherichia coli Toxin-Antitoxin Systems.
mBio. 2021 Oct 26;12(5):e0201221. doi: 10.1128/mBio.02012-21. Epub 2021 Sep 21.
9
Toxins MazF and MqsR cleave Escherichia coli rRNA precursors at multiple sites.
RNA Biol. 2017 Jan 2;14(1):124-135. doi: 10.1080/15476286.2016.1259784. Epub 2016 Nov 18.
10
The mRNA interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA.
Mol Microbiol. 2008 Aug;69(3):559-69. doi: 10.1111/j.1365-2958.2008.06284.x. Epub 2008 Jun 28.

引用本文的文献

1
Targeted removal of the 16S rRNA anti-Shine-Dalgarno sequence by a Mycobacterium tuberculosis MazF toxin.
J Biol Chem. 2025 Jul;301(7):110323. doi: 10.1016/j.jbc.2025.110323. Epub 2025 May 30.
3
Identification of Genes Encoded Toxin-Antitoxin System in Strains from Clinical Sample.
Infect Disord Drug Targets. 2024;24(8):e140324227967. doi: 10.2174/0118715265274164240117104534.
4
Conserved Amino Acid Moieties of Desulforudis audaxviator MazF Determine Ribonuclease Activity and Specificity.
Front Microbiol. 2021 Nov 11;12:748619. doi: 10.3389/fmicb.2021.748619. eCollection 2021.
5
Structural and functional analysis of the MazEF toxin-antitoxin system.
IUCrJ. 2021 Mar 5;8(Pt 3):362-371. doi: 10.1107/S2052252521000452. eCollection 2021 May 1.
6
Molecular and Structural Basis of Cross-Reactivity in Toxin-Antitoxin Systems.
Toxins (Basel). 2020 Jul 29;12(8):481. doi: 10.3390/toxins12080481.
7
mRNA Interferase BC0266 Shows MazF-Like Characteristics Through Structural and Functional Study.
Toxins (Basel). 2020 Jun 8;12(6):380. doi: 10.3390/toxins12060380.
8
The Variety in the Common Theme of Translation Inhibition by Type II Toxin-Antitoxin Systems.
Front Genet. 2020 Apr 17;11:262. doi: 10.3389/fgene.2020.00262. eCollection 2020.
9
Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability.
Nucleic Acids Res. 2019 Nov 4;47(19):10400-10413. doi: 10.1093/nar/gkz760.
10
A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability.
Toxins (Basel). 2018 Dec 4;10(12):515. doi: 10.3390/toxins10120515.

本文引用的文献

1
Toxin-antitoxins and bacterial virulence.
FEMS Microbiol Rev. 2016 Sep;40(5):592-609. doi: 10.1093/femsre/fuw022. Epub 2016 Jul 29.
2
Substrate Recognition and Activity Regulation of the Escherichia coli mRNA Endonuclease MazF.
J Biol Chem. 2016 May 20;291(21):10950-60. doi: 10.1074/jbc.M116.715912. Epub 2016 Mar 29.
3
tRNA is a new target for cleavage by a MazF toxin.
Nucleic Acids Res. 2016 Feb 18;44(3):1256-70. doi: 10.1093/nar/gkv1370. Epub 2016 Jan 5.
5
Evolving new protein-protein interaction specificity through promiscuous intermediates.
Cell. 2015 Oct 22;163(3):594-606. doi: 10.1016/j.cell.2015.09.055. Epub 2015 Oct 17.
6
Recent functional insights into the role of (p)ppGpp in bacterial physiology.
Nat Rev Microbiol. 2015 May;13(5):298-309. doi: 10.1038/nrmicro3448. Epub 2015 Apr 8.
7
Structural and biophysical characterization of Staphylococcus aureus SaMazF shows conservation of functional dynamics.
Nucleic Acids Res. 2014 Jun;42(10):6709-25. doi: 10.1093/nar/gku266. Epub 2014 Apr 19.
9
Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis.
Mol Cell. 2013 Nov 7;52(3):447-58. doi: 10.1016/j.molcel.2013.09.006. Epub 2013 Oct 10.
10
(p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity.
Cell. 2013 Aug 29;154(5):1140-1150. doi: 10.1016/j.cell.2013.07.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验